Supporting Information to "Shape anisotropy induced jamming of nanoparticles at liquid interface: A tensiometric study"

Chandan Kumar,^{†,‡} Suman Bhattacharjee,^{¶,‡} and Sunita Srivastava^{*,‡}

†Department of Materials Science and Engineering, Nagoya University, Nagoya, 464-8603, Aichi, Japan

[‡]Soft Matter and Nanomaterials Laboratory, Department of Physics, Indian Institute of Technology Bombay, Mumbai-400 076, India

¶Centre for Research in Nanotechnology & Science (CRNTS), Indian Institute of Technology Bombay, Mumbai-400 076, India

E-mail: sunita.srivastava@phy.iitb.ac.in

Phone: +91-22-2576-7572

¹ Contents

2	1	Transmission Electron Microscopy (TEM) of AuNR and AuNP	S2
3	2	UV-Visible spectroscopy	$\mathbf{S3}$
4	3	Dynamic Light Scattering (DLS) and Zeta Potential measurement	$\mathbf{S4}$
5	4	Adsorption kinetics : Linear fitting to determine K_{ads} and K_{arr}	$\mathbf{S6}$
6	Re	eferences	$\mathbf{S7}$

⁷ 1 Transmission Electron Microscopy (TEM) of AuNR and AuNP

⁹ Synthesized particles are imaged using transmission electron microscopy (JEOL, JEM-2100F, ¹⁰ FEGTEM 200 kV) as shown in Figure S1(a,c) below. Using ImageJ¹ software aspect ratio ¹¹ and size distribution for AuNR and AuNP, respectively, are obtained. Gaussian fit of the ¹² histograms shows the average aspect ratio of AuNR is ~ 4 [Figure S1(b)] and the size of ¹³ AuNP is ~ 16 nm [Figure S1(d)].

Figure S1: TEM micrographs for synthesized AuNR (a) and AuNP (c) are shown. Scale bars are 20nm and 100nm in (a) and (c), respectively. Size distribution histogram fitted with a Gaussian profile giving estimates of AuNR aspect ratio (L/D) in Figure S1(b) and AuNP size in Figure S1(d).

¹ 2 UV-Visible spectroscopy

- ² UV-visible spectra for AuNR and AuNP colloidal solution are obtained using JASCO V-730
- ³ Spectrophotometer. For AuNR [Figure S2(a)], we observe two peaks for longitudinal (LSPR
- $_{4}$ at 819 nm) and transverse (TSPR at 508 nm) plasmon resonance due to the anisotropic

geometry. For AuNP, the absorbance peak is at 525 nm [Figure S2(b)]. Using the maximum
absorbance values at LSPR for AuNR and AuNP, concentration is estimated using Beer
Lambert's law.²

Figure S2: UV-Vis spectra for AuNR (a) and AuNP (b) showing SPR peaks.

⁴ 3 Dynamic Light Scattering (DLS) and Zeta Potential

5 measurement

⁶ DLS measurements on the colloidal particles are done using Zetasizer NanoZS (Malvern).

7 Since AuNRs have translational and rotational diffusion constants, an approximate hydrody-

⁸ namic size is obtained [Figure S3(a)] which is closer to the size calculated from TEM images.

⁹ Zeta potential in Figure S3(b) shows a positive charge on the rods due to CTAB layer.

10

Figure S3: Hydrodynamic size (a) & Zeta potential (b) estimation for AuNR

Hydrodynamic size of spherical AuNP is estimated correctly [Figure S4(a)]. Zeta potential in Figure S4(b) shows a positive charge on the particles due to CTAB layer. Both zeta
potential values indicate stable colloidal solutions.

Figure S4: Hydrodynamic size (a) & Zeta potential (b) estimation for AuNP

¹ 4 Adsorption kinetics : Linear fitting to determine K_{ads} ² and K_{arr}

³ Figure S5 shows an indicative plot for the calculation of the rate constants. From the $\gamma - t$ ⁴ plot of both the systems, the data is fitted using the Graham-Phillips equation to find out ⁵ the rate constants such as K_{ads} and K_{arr} . The first slope signifies K_{ads} and the latter gives ⁶ K_{arr} .

Figure S5: Linear fitting using the Graham-Phillips equation for AuNP and AuNR systems.

¹ References

- ² (1) Schneider, C. A.; Rasband, W. S.; Eliceiri, K. W. NIH Image to ImageJ: 25 years of
- ³ image analysis. *Nature Methods* **2012**, *9*, 671–675.
- 4 (2) McNaught, A. D.; Wilkinson, A., et al. Compendium of Chemical Terminology; Blackwell
- ⁵ Science Oxford, 1997; Vol. 1669.