Supplementary information

Resonant tunneling on a colloidal CdS semiconductor quantum-dot singleelectron transistor based on heteroepitaxial-spherical Au/Pt nanogap electrodes

Genki Ohkatsu,^a Takumi Nishinobo,^a Masaki Saruyama,^b Toshiharu Teranishi^b and Yutaka Majima*^a

 ^aLaboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
^bInstitute for Chemical Research, Kyoto University, Uji 611-0011, Japan

*E-mail: majima@msl.titech.ac.jp

Theoretical I_{SET}-V_d curves based on the orthodox theory of SET

Figures S1(a)-S1(e) show theoretical I_{SET} - V_d curves based on the orthodox theory of SET. Each SET parameter was varied ±5 % from the optimized values: R_s = 280 M Ω , R_d = 50 M Ω , C_s = 200 zF, C_d = 300 zF, and Q_0 = 0.015 e, respectively.

Figure S1. Comparison of theoretical I_{SET} - V_d curves where one of the 5 parameters is varied by ±5 % in (a) R_s , (b) R_d , (c) C_s , (d) C_d , and (e) Q_0 , respectively.

Theoretical Resonant Tunneling Current $I_{\rm RT} - V_{\rm d}$ Curve on a single Quantum Dot Device

The resonant tunneling current $I_{\rm RT}$ is calculated by

Figure S2. Theoretical resonant tunneling current $I_{RT} - V_d$ curve. Here, the fitting parameters are $\mu_{dot} = 0.275 \text{ eV}$, $\sigma = 0.017 \text{ eV}$, and $A = 1.2 \times 10^{-9} \text{ A}$.