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S1. Characterization

A Renishaw (Invia) system with a 532 nm laser source was used to record Raman spectra. A 

QuantachromeAsiQwin instrument monitored N2 adsorption-desorption isotherm. X-ray 

diffractometer (XRD) of model Bruker, D8 Advance, CuKα source 1.54Å was used to capture 

XRD patterns. Thermal analyses were performed in open α-Al2O3 crucibles with a Netzsch STA 

449C Jupiter instrument at a heating rate of 5 °C min-1, under Ar flow in the sample 

compartment. Hitachi SU8010 based Field emission scanning electron microscopy (FESEM) 
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with applied voltage of 2-5 kV has been used to record morphological images of the samples, 

Energy-dispersive X-ray spectroscopy (EDS) and elemental mapping. X-ray photoelectron 

spectroscopy is performed to determine different bonding with respect to different binding 

energies. 
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Figure S1. XRD pattern of ZIF-67.
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Figure S2. TGA of ZIF-67 from room temperature to 1000 ℃ under Ar atmosphere.

Figure S3. N2 adsorption desorption isotherm and pore size distribution of Z-700, Z-800, and Z-

900.
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Figure S4. (a) XRD and (b) Raman spectra of Z-700, Z-800, and Z-900.
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Figure S5. Survey scan of Co4N/carbon.
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S2. Calculations of electrochemical parameters

The calculation for specific capacitance from CV and GCD has been calculated using the 

following equations- 

(i) Three-electrode system

For CV calculation [2],

(S1)

𝐶𝑠 =
1

2𝑚𝑠∆𝑉

𝑉𝑓

∫
𝑉𝑖

𝐼(𝑉)𝑑𝑉

where (∫IdV) is the integral area of the CV curve, m is the mass of the active material, is the ∆𝑉 

potential window of the material and s is the scan rate under which CV has been performed.

For GCD calculation

(S2)
𝐶𝑠 =

∆𝑡 × 𝐼𝑑

𝑚 × ∆𝑉

Where, ∆t is the discharging time, Id is the discharge current density, m is the mass of active 

materials on the electrode in g, and ΔV is the voltage window.

(ii) Asymmetric Supercapacitor Device Calculation (two-electrode system)

For GCD calculation

                                                   (S3)
𝐶𝑠 =

∆𝑡 × 𝐼𝑑

𝑚𝑡 × ∆𝑉

Where, ∆t is the discharging time, Id is the discharge current density, mt is the total mass 

of positive and negative electrode materials in g, and ΔV is the voltage window of the 

device.

The energy density and power density is calculated using the following formulae1,
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(S4)
𝐸𝑠 =

𝐶𝑠 × ∆𝑉2
𝐷

2 × 3.6

(S5)
𝑃𝑠 =

𝐸𝑠 × 3600

∆𝑡

where, Cs = specific capacitance, Δt = discharging time, ΔV = total potential deviation of the 

voltage window

Figure S6. CV comparison of Co4N/carbon and Z8-800 in positive voltage range.



7

Figure S7. Electrochemical characterization of Z-800 electrode: (a) CV, (b) discharge curve, (c) 

Nyqusit plot, and (d) Phase vs frequency plot (inset: capacitance vs scan rate).

Figure S8. (a) Relaxation time of the Co4N/carbon electrode from the phase vs frequency plot 

and (b) cyclic stability test of the Co4N/carbon electrode. 
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Figure S9. Comparison of original CV area of Co4N/carbon and the area contributing surface-

controlled reaction at 20 mV/s using different slope values using Dunn’s method (a) using slope 

5-500 mV/s, (b) using slope 5-200 mV/s, (c) using slope 5-100 mV/s, (d) using slope 5-80 mV/s, 

(e) using slope 5-50 mV/s, and (f) using slope 5-20 mV/s. 

Figure S10. (a) Different slope (proportional to the surface contribution) calculated from 

different data sets, and (b) different intercept (proportional to the diffusion contribution).
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Figure S11. R2 value of the linear fitting using different scan rate ranges.
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Figure S12. (a) R2 value of the linear fitting using 5-20, 50-100, 50-200, and 50-500 mV/s of 

CV data, (b) slope (proportional to the surface contribution) calculated for 5-20 and 50-100 mV/s 

of CV data set, and (c) surface contribution value calculated from slope of different data sets of 

CV.



11

Figure S13. (a) Relative capacitance of the device in different voltage window range, and (b) 

cyclic stability.

Table S1. Comparison of different material’s supercapacitor performance with this work.

Supercapacitor
Device

Electrolyte Energy Density
(Wh/kg)

Power Density
(kW/kg)

Ref

MOF-derived Co(OH)2//AC 6 M KOH 13.6 0.14 2

MIL-100 (Fe) derived Fe3O4/Fe/C//MIL-100 (Al) 
derived NPC

6 M KOH 17.49 0.388 3

Ni3S2/MWCNT-NC//AC 2 M KOH 19.8 0.798 4

ZIF-8/PANI 1 M H2SO4 21 0.1 5

MOF derived NiO@400//AC 3 M KOH 21.4 0.375 6

ZIF-8 derived AQ functionalized Carbon// NQ and 
TCBQ functionalized Carbon

1 M H2SO4 23.5 0.7 7

ZIF-8 derived ZnO QDs/carbon/CNTs// N-doped 
carbon/CNTs

1 M Na2SO4 26.8 0.847 8

Ni-Zn-BDC derived NiS2/ZnS 3 M KOH 28 0.748 9

ZIF-67/PEDOT//ZIF-67/PEDOT PVA/1M 
H2SO4

11 0.2 10

ZIF-8 derived NPC// ZIF-8 derived NPC 1M H2SO4 10.8 0.22 11

Fe-MOF derived NPC/CNT// Fe-MOF derived 
NPC/CNT

1M H2SO4 18.8 0.3 12

CNTs@Mn-MOF//CNTs@Mn-MOF 1M Na2SO4 6.9 0.122 13
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Cu-CAT/NWA// Cu-CAT/NWA PVA/KCl 2.6 0.2 14

CNT@NiO//PCP derived from Zn-MOFs 1 M KOH 25.4 0.4 15

Ni doped MOF-5/rGO//Ni doped MOF-5/rGO 1M KOH 37.8 0.227 16

ZIF-67 derived Co4N/carbon//Z-800 1 M H2SO4 26.6 0.36 This 
work

*AQ= Anthraquinone, NQ= 1, 4-naphthoquinone, TCBQ= tetrachlorobenzoquinone
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