ELECTRONIC SUPPLEMENTARY INFORMATION

Core-shell niobium(V) oxide@molecularly imprinted polythiophene nanoreceptors for transformative, real-time creatinine analysis

Zohaib Saddique¹, Maleeha Saeed¹, Muhammad Faheem², Sadia Z. Bajwa³, Adnan Mujahid¹, Adeel Afzal¹*

¹ Sensors and Diagnostics Lab, School of Chemistry, University of the Punjab, Quaid-i-Azam Campus, Lahore, 54590, Pakistan

² School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, P. R. China

³ National Institute for Biotechnology and Genetic Engineering, PO Box 577, Jhang Road, Faisalabad, 38000, Pakistan

* Corresponding author. Email: <u>adeel.chem@pu.edu.pk</u>

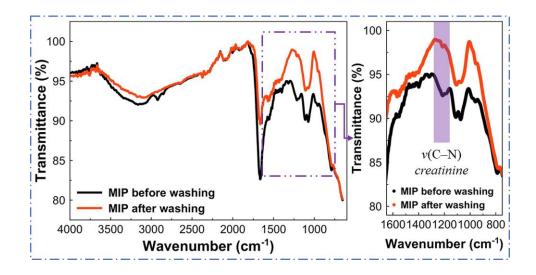


Figure S1. FTIR spectra of Nb₂O₅@MIP nanoreceptors before and after washing out the template, creatinine.

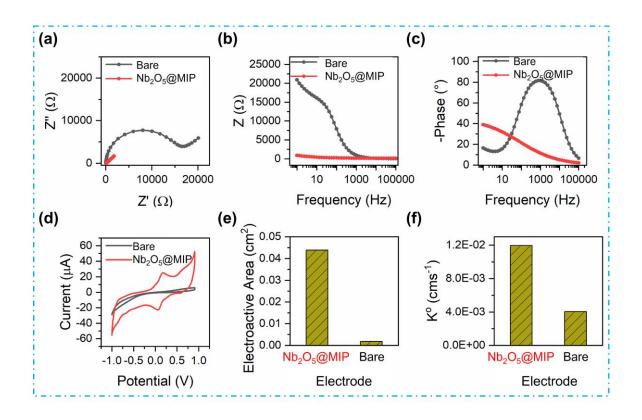


Figure S2. EIS and CV analyses: (a) Nyquist plots, (b) Bode magnitude plots, (c) Bode phase angle plot, and (d) CV scans of the bare and Nb₂O₅@MIP modified electrodes. A comparison of (e) the electroactive surface area and (f) the heterogeneous rate constant of the bare and Nb₂O₅@MIP modified electrodes. All measurements are performed in a redox solution containing [Fe(CN)₆]^{3-/4-} (2.5 mM), KCl (0.05 M) in PBS (pH 7.4).

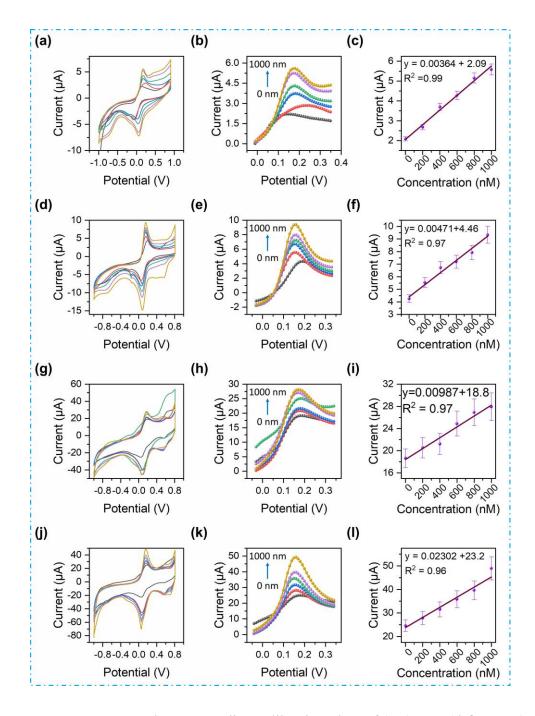


Figure S3. CV scans and corresponding calibration plots of (a-c) NIP, (d-f) MIP, (g-i) Nb₂O₅@NIP, and (j-l) Nb₂O₅@MIP sensors at varying concentrations of creatinine (0–1000 nM) in a redox solution. All measurements are performed in a redox solution containing [Fe(CN)₆]^{3-/4-} (2.5 mM), KCl (0.05 M) in PBS (pH 7.4).