Supporting Information

Adjusting the charging behavior of TiO₂ with basic surfactants in an apolar medium for electrophoretic display

Yanfang Yu ^{ab}, Hongli Liu ^{ab}, Yinzhao Zhen ^{ab}, Ye Liu ^{ab} Bonan Gao ^{ab} Xianggao Li ^{ab}, and Shirong Wang ^{ab *}

^aSchool of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.

^{°b}Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China.

Fig. S1 TEM images of (a) raw TiO_2 and TiO_2 after modified with (b) T161, (c) T151, (d) T154, (e) S17000 and (f) S24000.

Fig. S2 The optical path under laser irradiation of T161, T151, T154, S17000 and S24000 in Isopar L.

Fig. S3 Transient current diagram of (a)~(e) non-particle dispersions and (f) ~ (j) TiO_2 particle dispersions with different concentrations of surfactants.

Fig. S4 The change diagram of TSI of TiO₂ modified with (a) T161, (b) T151, (c) T154, (d) S17000 and (e) S24000. The Change diagram of TSI (f) with the same concentration of anchoring groups and (g) with the same concentration of solvated chain.

Fig. S5 The change of the backscattering and transmitting light of TiO₂ modified with (a) T161, (b) T151, (c) T154, (d) S17000 and (e) S24000.

Fig. S6 The values of the backscattering and transmitting light of TiO₂ modified with (a) T161, (b) T151, (c) T154, (d) S17000 and (e) S24000 with the same concentration of solvation chain for every surfactant.

Fig. S7 The values of the backscattering and transmitting light of TiO₂ modified with (a) T161, (b) T151, (c) T154, (d) S17000 and (e) S24000 with the same concentration of anchoring groups for every surfactant.

No.	White/Black or Colored Particles-Additives	Solvent	Response Time (ms)
1	TiO ₂ /FeMn Black	Isopar L	166.7
	-Solsperse 17000/AFK 3777 (this work)		
2	TiO ₂ /Copper Chromite Black	Isopar G	176.6
	-OLOA 5470 ¹		
3	TiO ₂ /FeMn Black	Isopar G	187.0
	-OLOA 11000/SiO ₂ ²		
4	TiO ₂ /Carbon Black	C_2Cl_4	240.0
	-Span 80/OLOA 1200 ³		
5	TiO ₂ /FeMn Black	Nonpolar solvent	320.0
	-CCA/LC ⁴		
6	TiO ₂ /FeMn Black	/	480.0
	-CCA ⁵		
7	TiO ₂ /Carbon Black	/	500.0
	-CCA ⁶		
8	TiO ₂ /Fe ₃ O ₄	C_2Cl_4	2000.0
	-OLOA 1200 ⁷		
9	TiO ₂ /Organic Pigment	C ₂ HCl ₃	3000.0
	-Span 85 ⁸		
10	TiO ₂ /Copper Phthalocyanine	C_2Cl_4	5000.0
	-Span 80 ⁹		

 Table S1 The comparison of the response time of EPDs consisting of electrophoretic

 particles with different modification methods

References

- 1J. Hong, M. Lai, J. Chen, L. Zhou, T. Sun, B. Ma, Y. Chen, X. Zeng and M. Wu, *Chemical Engineering Journal*, 2022, **439**, 135726.
- 2M. Yang, G. Liu, Z. Zeng, S. Zhang, J. Liu, Z. Qin, Z. Chen and B. Yang, *Adv Materials Technologies*, 2022, 2200371.
- 3K. U. Lee, M. J. Kim, K. J. Park, M. Kim and J. J. Kim, *Dyes and Pigments*, 2015, **121**, 276–281.
- 4Y.-D. Zhang, W.-J. Hu, Z.-G. Qiu, J.-Z. Xu, M.-Y. Yang, Y.-F. Gu, J.-X. Cao, P. Chen, G.-S. Liu and B.-R. Yang, *Sci Rep*, 2019, **9**, 13981.
- 5W. He, Z. Yi, S. Shen, Z. Huang, L. Liu, T. Zhang, W. Li, L. Wang, L. Shui, C.

Zhang and G. Zhou, Micromachines, 2020, 11, 498.

- 6J. Y. Kim, J.-Y. Oh and K.-S. Suh, Carbon, 2014, 66, 361–368.
- 7S. Liu, G. Wu, H.-Z. Chen and M. Wang, Synthetic Metals, 2012, 162, 89-94.
- 8P. Yin, G. Wu, W. Qin, X. Chen, M. Wang and H. Chen, *Journal of Materials Chemistry C*, 2013, 1, 843–849.
- 9Y. Wang, Z. Zhang, Q. Chen, C. Ye, J. Zhang, Q. Gao, L. Liu, J. Yang, X. Pan, Y. Miao, F. Chi and M. Jin, *Micromachines*, 2022, **13**, 880.