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S1 Wave propagation simulation

We want to estimate how much the effective size of our holes shrink due to the dispersion forces as this is a
know effect in other holes[1]. We used two methods to do this. Here we give a more detailed description of
the second method which is a finite difference Cranck-Nicholson scheme.

To estimate the reduced radius of the holes we will simulate a helium wave-packet colliding with the
boron and nitrogen atoms. We will assume that any part of the wave packet that comes within the Van der
Waals radius of the boron and nitrogen is absorbed and disappears. Outside the VdW radius, we assume
that the atom obeys the Schrödinger equation with a Van der Waals potential and an electrostatic potential

h̄2

2m
∇2ψ(r, t)− C6

|r − rA|6
ψ(r, t)− 1

4πε0

q2α(0)

|r − rA|4
ψ(r, t) = ih̄

∂

∂t
ψ(r, t) , (S1)

with rA being the position of the nitrogen or boron atom, r being the position in the simualted box,
The general form of the Schrödinger equation is

Ĥψ = ih̄
∂

∂t
ψ , (S2)

which has a solution on the form

ψ(r, t) = exp(− iĤ
h̄

(t− t0))ψ(r, t0) . (S3)

A half implicit half explicit finite difference method is then used to approximate the propagation

(1 +
iĤ

2h̄
δt)ψt+δt = (1− iĤ

2h̄
δt)ψt . (S4)
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This finite difference scheme is the same as used by [2], we use it as it is norm preserving. Now we define

(1± iĤ

2h̄
δt) = A± , (S5)

such that equation S4 becomes
A+ψt+δt = A−ψt . (S6)

To reduce the number of points having to be simulated we assume the helium atom is stationary and
that the potential is moving towards it. In addition, we assume that the collision is head-on and that there
is no angular momentum relative to the helium atom. Thus we can model a box around the helium atom
at rest and move the boron or nitrogen into the box during the simulation. We can also assume that the
wavefunction can be split into an angular part which we assume is uniform and a radial and z-component
part which evolves in time. The resulting Schrödinger equation then looks like
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We define

V (r) = − C6

|r|6
− 1

4πε0

q2α(0)

|r|4
, (S8)

thus equation S7 becomes
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We divide the box around the helium atom into a uniform grid. We organize the wavefunction into a
n ·m vector organized such that

ψ1 = ψ(r1, z1) , ψ2 = ψ(r2, z1) , ... , (S10)

ψn = ψ(rn, z1) , ψn+1 = ψ(r1, z2) , ... , (S11)

ψn·m−1 = ψ(rn−1, zm) , ψn·m = ψ(rn, zm) . (S12)

In our case we use n = 256 and m = 256. With r going from 0nm to 8nm and z going from -4nm to 4nm,
that makes δr = 7.8pm and we use a timestep of dr

32vz
with vz being the velocity of the helium atom.

The operator A+ = (1 + iĤ
2h̄ δt) can then be expressed as a m · n×m · n-matrix. The resulting matrix is

a block tridiagonal matrix

A+ =



D1 U1 0 0 . . . 0 0 0
L2 D2 U2 0 . . . 0 0 0
0 L3 D3 U3 . . . 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 . . . Lm−1 Dm−1 Um−1

0 0 0 0 . . . 0 Lm Dm


, (S13)

with

Ui = Li = −i h̄δt

4mδz2
1n×n , (S14)

and

Di =



di,1 u1 0 0 . . . 0 0 0
l2 di,2 u2 0 . . . 0 0 0
0 l3 di,3 u3 . . . 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 . . . ln−1 di,n−1 un−1

0 0 0 0 . . . 0 ln di,n


, (S15)
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where
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2h̄
, (S16)
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, (S17)
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4mδr2
+ i

1

j

h̄δt

2mδr2
, (S18)

u1 = 0 . (S19)

The operator A− is the complex conjugate of A+.
Performing a time step is therefore equivalent to solving the matrix equation

A+ψt+δt = bt, (S20)

with
bt = A−ψt . (S21)

can then be solved by iteration if certain criteria are met[3]. The block matrix is solved by iteratively by
solving

Dixi = b− Lixi−1 − Uixi+1 , (S22)

which should have x converge towards a solution[3]. Since Di is a tridiagonal matrix it can be solved quickly
using the tridiagonal matrix algorithm [4].

At the end of each time step we multiply the parts inside the van der Waals radius of the atom by 0, that
is |r − rA| < rvdW, and we move the box according to according to its velocity, rA,new = rA − vδt, with v
being the velocity of the helium atom.

We do a total of 6 runs, 3 different velocities for nitrogen and 3 different velocities for boron. The starting
shape of the wavepacket is such that the wavepacket sqared is a Gaussian

ψ0(r) =
1√√

2π3σzσ2
r

exp

[
− r2

4σr
− z2

4σz

]
, (S23)

with σr = σz = 8Å. We start the propagation with the center of our box at 60Å before the N or B atom and
end it at 40Å past the atoms. The final wavefunction is then compared to the first one to find the amount
that passed within the van der Waals radius.

S2 Atomic charges in hBN

The definition of atomic charges in molecules suffers from a degree of arbitrariness, such that different
schemes for the determination have been devised. Tab. 1 compares values obtained from Bader and Hirshfeld
partitioning from the literature and our calculations. All results show the same qualitative trend in that
the nitrogen atom is negatively charged and the boron atom is positively charged contrary to chemical
understanding. Generally the charges determined by the Bader method are larger than these from Hirshfeld
partitioning.

There is a large deviation between Bader results determined from different DFT codes, but the Hirshfeld
values are in much better agreement. The origin of the difference in the Bader values is beyond the scope of
this investigation. We therefore use the Hirshfeld charges in our manuscript due to their consistency. Atomic
charges near to the holes appear to be larger than these of pristine hBN. The maximal Hirshfeld charges we
find do not exceed ±0.39|e|, however.
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Table 1: Charges (in terms of unit charge |e|) around atoms in h-BN.
Material N Charge B Charge Method
hBN pristine[5] -0.47 +0.47 Bader VASP
hBN pristine[6] -0.67 +0.67 Bader VASP
hBN pristine[7] -2.28 +2.28 Bader GPAW
hBN pristine[8] -0.17 +0.17 Hirshfeld Abinit
hBN pristine ours -2.19 +2.19 Bader
hBN pristine ours -0.20 +0.20 Hirshfeld
PQP+[9] -1.1 Bader GPAW
N edge in hBN hole[6] -1.59 Bader VASP
B edge in hBN hole[6] +1.50 Bader VASP
Circular hole (6 Ang) ours -0.39 0.38 Hirshfeld
Circular hole (10 Ang) ours -0.32 0.32 Hirshfeld
Elliptical hole ours -0.39 0.38 Hirshfeld
Snowflake hole ours -0.29 0.24 Hirshfeld
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