Supplementary Information (SI) for Nanoscale Advances. This journal is © The Royal Society of Chemistry 2024

Supplementary Information for

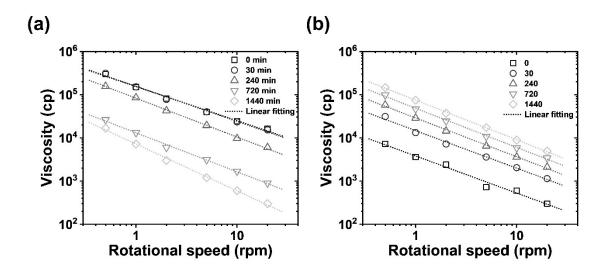
Decisive role of electrostatic interaction on rheological evolution of graphene oxide under ultrasonic

fragmentation

Dongpyo Hong^a, Matlabjon Sattorov^a, Ok Sung Jeon^a, Se Hun Lee^a, Gun-Sik Park^{b*}, Young Joon Yoo^{a*}, and Sang Yoon Park^{c*}

^aAdvanced Institute of Convergence Technology, Seoul National University, Gyeonggi-do 16229, Republic of Korea

^b Center for THz-Driven Biomedical Systems, Department of Physics and Astronomy, Institute of Applied Physics, College of Natural Sciences, Seoul National University, Seoul, 08826, Republic of Korea


^cSchool of Electronic Engineering, Kyonggi University, Gyeonggi-do 16227, Republic of Korea

This supplementary information contains the following sections:

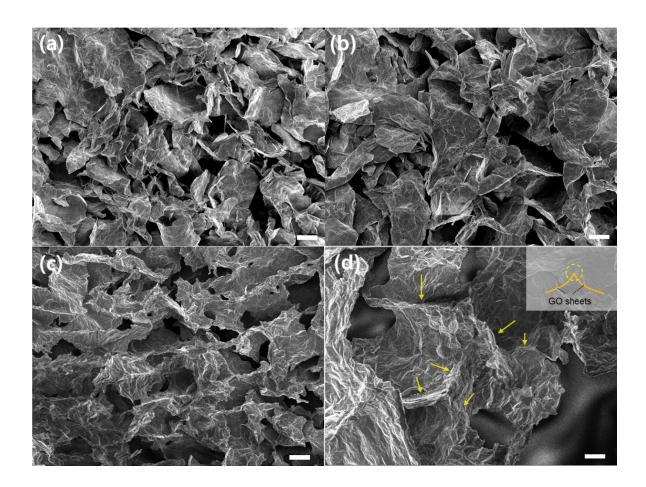

Figures S1-S4

Fig. S1. Optical image of casted GO film with casting gap of 600μ m. (a) LOGO (b) HOGO.

Fig. S2. Shear thinning effect of GO. (a)Viscosity of HOGO depending on rotational speed of spindle. (b)Viscosity of LOGO depending on rotational speed of spindle after different sonication time

Fig. S3. Morphology of freeze-dried LOGO (a-b) before sonication and (c-d) after 120 min sonication measured by SEM. Scale bar: $20\mu m$ for (a), (c) and $10 \mu m$ for (b), (d).

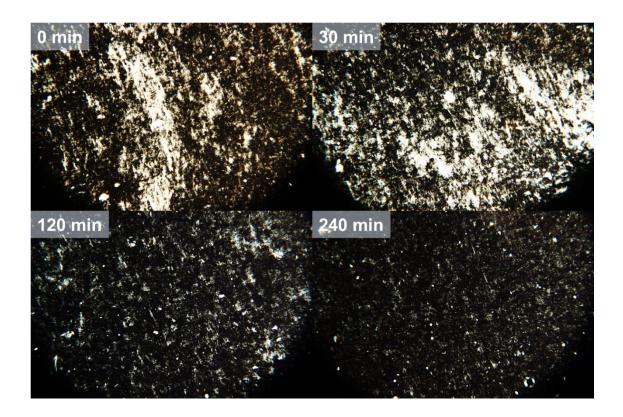


Fig. S4. Polarized optical microscope image of HOGO at different sonication time.