Design and Development of Symmetric Aromatic Bischalcogenide based Photocatalysts for water treatment Application: A Concise study of Diphenyldiselenide Polypyrrole nanocatalysis

Tabee Jan^a, Shabnam Raheem^a and Masood Ahmad Rizvi^{a*}

^a Department of Chemistry, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir-

190006, India.

*Corresponding author Email: <u>masoodku2@gmail.com</u>.

Supplementary Data:

List of Figures

Fig. S1. FTIR spectra of (PhSe)₂, PPY and (PhSe)₂/PPY nanocomposite

Fig. S2. X-ray diffraction patterns of (PhSe)₂, PPY and (PhSe)₂/PPY nanocomposite.

Fig.S3. UV Visible spectra of 20 ppm M.G dye solutions at pH 7 as a function of irradiation time at different dosages of (PhSe)₂/PPY photocatalyst.Their Kinetic plots and photodegradation rates .

Fig. S4. UV Visible spectra of 20 ppm Rh.B dye solutions at pH 7 as a function of irradiation time at various doses of (PhSe)₂/PPY photocatalyst and their photodegradation rates.

Fig. S5. Comparative Kinetic plots of M.G dye degradation in the presence of 20 mg of (PhSe)₂/PPY photocatalyst at pH 7 and pH 4.

Fig. S6. Absorbance spectra of 20 ppm dye solutions of M.G ,M.B, Rh.B and M.O at pH 7 as a function of irradiation time in the presence of 20 mg of (PhSe)₂/PPY photocatalyst.

Fig. S7. Mott-Schottky plots of PPY and (PhSe)₂.

Fig. S8. Evolution of the total organic carbon of M.G solutions as a function of the irradiation time in the presence of the (PhSe)₂/PPY photocatalyst and its 3D UV-Visible plot.

Fig.S9. UV-Visible plot of 20ppm isoniazid solution in contact with 20mg of (PhSe)₂/PPY photocatalyst at pH 7 as a function of the irradiation time and its photo-degradation kinetic plot following first order kinetics.

List of Schemes

Scheme S1. Schematic steps of the (PhSe)₂/PPY nanocomposite synthesis via *in situ* Oxidative Polymerization method.

Scheme S2. Degradation Pathway of M.G dye indicating successive de-methylations and ultimate mineralization.

List of Tables

Table S1 Percentage degradation and rate constant values for the degradation of M.G and Rh.B dyes using (PhSe)₂/PPY photocatalyst under different experimental conditions.

Fig.S1 Comparative FTIR spectra of (PhSe)₂, PPY and (PhSe)₂/PPY confirming composite formation.

Fig.S2 Comparative powder X-ray diffraction patterns of (PhSe)₂, PPY and (PhSe)₂/PPY nanocomposite

Fig. S3 Absorbance profiles of 20 ppm MG dye solutions at pH 7 as a function of irradiation time in the presence of (a) 5 mg, and (b) 10 mg of (PhSe)₂/PPY photocatalyst.(c) Kinetic plots and (d) corresponding evolution of the degradation rate during the first 8 minutes of reaction.

Fig. S4 (a) Absorbance spectra of 20 ppm RhB dye solutions at pH 7 as a function of irradiation time in the presence of (a) 5 mg (PhSe)₂/PPY photocatalyst and (b) corresponding evolution of the degradation rate during the first 40 minutes of reaction.

Fig. S5 Comparison of Kinetic plots of M.G dye degradation in the presence of 20 mg of (PhSe)₂/PPY photocatalyst at pH 7 and pH 4.

Fig.S6 Absorbance spectra of 20 ppm dye solutions of (a) M.G,(b) Rh.B,(c) M.B and (d) M.O at pH 7 as a function of irradiation time in the presence of 20 mg of (PhSe)₂/PPY photocatalyst.

Fig.S7 Mott-Schottky plots showing flat band potentials of (a) PPY and (b) (PhSe)₂

Fig.S8 (a) Evolution of the total organic carbon of M.G solutions as a function of the irradiation time in the presence of the (PhSe)₂/PPY photocatalyst. (b) 3D UV-Visible plot of M.G dye degradation as a function of irradiation time in the presence of (PhSe)₂/PPY. The blue shift in λ_{max} of the dye molecule is indicative of successive its demethylations.

Fig.S9 (a) UV-Visible plot of 20ppm isoniazid solution in contact with 20mg of (PhSe)₂/PPY photocatalyst at pH 7 as a function of the irradiation time. (b) Corresponding photo-degradation kinetic plot following first order kinetics.

Scheme S1 Schematic steps of the (PhSe)₂/PPY nanocomposite synthesis via *in situ* Oxidative Polymerization method

Scheme S2 Degradation Pathway of MG dye indicating successive de-methylations and ultimate mineralization.

Dye concentration (20ppm,100mL),(PhSe) ₂ /PPY (5mg-20mg), pH 7				
Dye	Amount of	% Degradation	Irradiation	Rate constant
	photocatalyst (mg)		time(min)	(min ⁻¹)
M.G	5	97.69	80	0.027
	10	97.50	15	0.176
	20	97.12	5	0.737
Rh.B	5	96.21	40	0.079
	20	98.48	40	0.104
Dye concentration (50ppm,100mL),(PhSe) ₂ /PPY (20mg), pH 7				
M.G	20	98.4	60	0.082
Rh.B	20	80.7	60	0.029

Table S1 Percentage degradation and rate constant values for the degradation of M.G and Rh.B dyes

 obtained under different experimental conditions