Supporting Information

Smart photopharmacological agents: LaVO₄:Eu³⁺@Vinyl Phosphonate combining luminescence imaging and photoswitchable butyrylcholinesterase inhibition

Gulia Bikbaeva¹, Anna Pilip², Anastasiya Egorova³, Vasiliy Medvedev¹, Daria Mamonova¹, Dmitrii Pankin¹, Alexey Kalinichev¹, Natalya Mayachkina², Lyudmila Bakina², Ilya Kolesnikov¹, Gerd Leuchs^{4*}, Alina Manshina^{1*}

¹ St. Petersburg state university, 7-9 Universitetskaya Embankment, St Petersburg, 199034, Russia
² St. Petersburg Federal Research Center of the Russian Academy of Sciences (SPC RAS)
Scientific Research Centre for Ecological Safety of the Russian Academy of Sciences, Korpusnaya
18, St. Petersburg, 197110, Russia

³ St. Petersburg State Technological Institute (Technical University), 26, Moskovski ave., St. Petersburg, 190013, Russia

⁴ Max Planck Institute for the Science of Light, Erlangen, 91058, Germany

* a.manshina@spbu.ru, gerd.leuchs@mpl.mpg.de

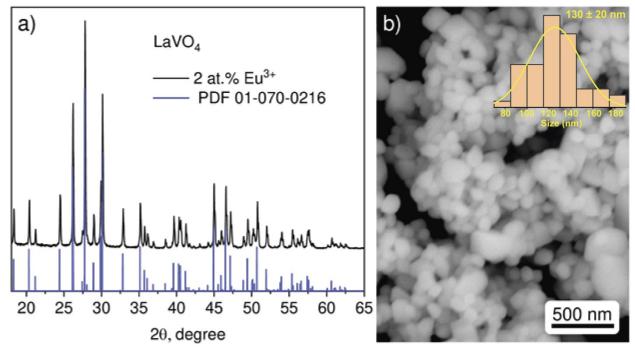


Fig. S1 a) XRD patterns for LaVO₄: Eu^{3+} 2 at.% particles and standard PDF-card of LaVO₄ (01-070-0216); b) SEM image of LaVO₄: Eu^{3+} 2 at.% particles.

Luminescence characterization of NPs LaVO₄:Eu³⁺

Figure S2 show excitation (red) and emission (black) spectra of the LaVO₄:Eu³⁺ 2 at.% nanocrystalline powder. Excitation spectrum measured for ${}^{5}D_{0}-{}^{7}F_{2}$ transition ($\lambda_{em} = 615$ nm) is dominated by a strong broad charge transfer band (CTB) situated in the UV range. CTB corresponds to the charge transfer in the VO₄³⁻ group ¹. Additionally, a series of sharp lines at longer wavelengths attributed to 4f-4f transitions inside Eu³⁺ ions was observed: ${}^{7}F_{0}-{}^{5}L_{7}$ (380 nm),

 ${}^{7}F_{0}-{}^{5}L_{6}$ (393 nm), ${}^{7}F_{0}-{}^{5}D_{3}$ (412 nm), and ${}^{7}F_{0}-{}^{5}D_{2}$ (463 nm). Emission spectrum obtained upon 318 nm excitation consists of narrow peaks, which is assigned to the following transitions: ${}^{5}D_{1}-{}^{7}F_{0}$ (525 nm), ${}^{5}D_{1}-{}^{7}F_{1}$ (532 and 537 nm), ${}^{5}D_{1}-{}^{7}F_{2}$ (554 nm), ${}^{5}D_{0}-{}^{7}F_{0}$ (578 nm), ${}^{5}D_{0}-{}^{7}F_{1}$ (587 and 594 nm), ${}^{5}D_{0}-{}^{7}F_{2}$ (615 nm), ${}^{5}D_{0}-{}^{7}F_{3}$ (651 nm), and ${}^{5}D_{0}-{}^{7}F_{4}$ (688 and 699 nm) 2,3 . The most prominent peak corresponds to the forced electric dipole ${}^{5}D_{0}-{}^{7}F_{2}$ transition, which suggests the absence of inversion symmetry at the Eu $^{3+}$ lattice site in the LaVO₄ host.

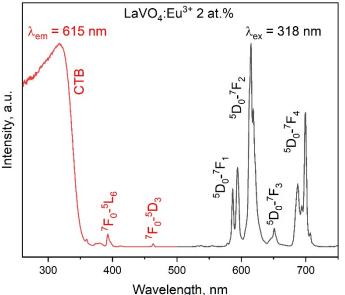


Fig. S2. Excitation (red) and emission (black) spectra of the LaVO₄:Eu³⁺ 2 at.% nanocrystalline powder.

References

- 1 I. E. Kolesnikov, D. V. Mamonova, M. A. Kurochkin, V. A. Medvedev and E. Y. Kolesnikov, *Ceram. Int.*, 2023, **49**, 20699–20705.
- 2 P. Serna-Gallén, H. Beltrán-Mir and E. Cordoncillo, *Ceram. Int.*, 2023, 49, 41078–41089.
- 3 W.-W. Park, P. K. Olshin, Y.-J. Kim, H.-W. Nho, D. V. Mamonova, I. E. Kolesnikov, V. A. Medvedev and O.-H. Kwon, *ACS Nano*, 2024, **18**, 4911–4921.