Supplementary Information for

Advanced lightweight lightning strike protection composites based on super-aligned carbon nanotube films and thermal-resistant zirconia

fibers

Text S1: Preparing process of SA-CNTF.

A chemical vapor deposition (CVD) method was employed to synthesize superaligned CNT arrays with a height of 0.3 mm on eight-inch silicon wafers. A single layer of SA-CNTF was extracted from an array using a dry method and placed on a glass substrate, ensuring the CNTs were aligned parallel to the drawing direction. By stacking multiple layers in parallel and shrinking them with ethanol, multilayer SA-CNTFs (dimensions: 300 mm * 300 mm) were produced. For a 1000-layer SA-CNTF, the areal density and the thickness reached approximately 20 g/m² and 30 μ m, respectively.

Figure S1. Typical morphology of the zirconia fiber. (a,b) SEM image of zirconia fiber paper. (c) EDS of zirconia fiber paper.

Figure S2. Ultrasonic characterization before lightning strikes. (a) Typical C-scan image. (b) Typical B-scan image.

Table S1. Surface electrical resistivity of LSP laminate samples.					
No	Name	Electrical resistivity (Ω/\Box)			
1	Z1	> 1M			
2	Z1C1000	2.56			
3	Z1C1200	1.85			

Table S2. Relevant parameters for calculating thermal conductivity of several isolation layer with CFRP

Isolation layer with CFRP	Specific heat capacity J/(g*K)	Thermal diffusion coefficient mm ² /s	Thermal conductivity W/m*K
Glass fiber	1.12	0.406	0.7102

Quartz fiber	1.17	0.458	0.7823
ZrO ₂ fiber	1.05	0.510	0.6821