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S1. Reconstructing Defect Geometry

The nonreconstructed defect geometries consisting of three dangling bonds were generated by
removing one atom from approximately the midpoint of pristine CNTs. Three reconstructed single-
vacancy configurations can be generated by creating a bond between a pair of dangling bonds. It
must be mentioned that two carbon atoms are considered to be bonded if the distance between
them is less than 1.85 Å. The created defect geometries are separated from each other by an angle
of 120◦. To find the stable configuration, each CNT structure was energy minimized separately.
Firstly, three initial structures were created by moving different sets of two adjacent dangling atoms
surrounding the defect closer to each other, thus creating a pentagonal ring. Energy minimization
in the steepest descent algorithm with AIREBO [1] potential was carried out, and the potential
energy at the end of the simulation was noted for each configuration. The structure with the
lowest energy is the most stable out of the three initial structures and was used in subsequent
simulations. This process is shown in Fig. S1 for chiral CNT (19, 6). This process is repeated for
all the CNTs, and the initial defective structures were generated.
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Figure S1: A concise representation of the process of generating stable CNT with single vacancy from nonrecon-
structed defect geometry. The top figure is the nonreconstructed defect geometry. The middle row shows the
structures before energy minimization. The potential energy at the end is compared, and the corresponding recon-
structed defect geometry is shown at the bottom.
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S2. Smoothing Radius Variation with Cubic Spline

At each timestamp, the radius was calculated by averaging the distance of each atom belonging
to the middle group from the CNT axis. At 300 K, the displacement of atoms in the horizontal
plane due to thermal vibration was quite significant compared to tensile strain. As a result,
the radius variation with time appeared to be noisy and fluctuating. To remove the thermal
noise, radius variation was approximated by cubic smoothing spline interpolation. [2] The radius
variation with strain extracted from MD simulation and corresponding cubic spline curve for CNT
(14, 10) is shown in Fig. S2. The calculated radius differed significantly from the theoretical
radius even before deformation due to energy minimization and thermal equilibration. Moreover,
radial compression during tensile elongation introduced different degrees of variation in radius
for different chirality. As a result, accurate calculation of the current radius was essential for
determining the correct cross-sectional area, stress, and Poisson’s ratio with varying strain.
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Figure S2: Variation of the radius with strain calculated from atom coordinates of CNT (14,10) and cubic smoothing
spline fitted curve to the raw data.

S3. Fluctuation in fracture strain and tensile strength

Fig. S3 and S4 show the tensile strength and fracture strain for pristine and defective CNTs,
respectively, as calculated from three molecular dynamics simulation runs with different seeds. To
include the data from all CNTs in a single graph, the CNTs are sorted by their chiral indices
(n,m), and the CNT order in the x-axis of these figures, is the position of a CNT in that list.

S4. Impact of strain rate and nanotube length

The dataset was generated by subjecting CNTs to a constant loading rate of 0.001 ps-1. The
length of these CNTs were set to ∼5 times their diameter. In this section, the change in Young’s
modulus (E), tensile strength (σmax and fracture strain (ϵmax) is observed by varying the initial
length of CNTs and strain rate. Strain rates of 0.0005, 0.005, and 0.01 ps-1 were applied to the
CNTs with lengths of ∼5 times the diameter. Then, the initial lengths were changed to ∼10, ∼25
times the diameter, and the nanotubes were elongated at a strain rate of 0.001 ps-1.

A slightly increasing trend is observed in the parameters due to increasing strain rate. This
observation conforms to the intuition that the fracture strain of a material decreases due to the
fatigue from being held longer at a highly stretched position caused by a slow strain rate. A
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Figure S3: Variation of (a) fracture strain, (b) tensile strength of pristine carbon nanotubes with various chiral
indices. The insert shows the first 7 data points depicting the ordering scheme of CNTs.
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Figure S4: Variation of (a) fracture strain, (b) tensile strength of defective carbon nanotubes with various chiral
indices.
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similar decreasing trend is observed with increasing length. This can be attributed to the increase
in the number of atoms i.e. points of failure at which fracture can start. More points of failure
increase the probability of the breakdown of a bond when the strain is close to fracture strain.
Despite these trends, the deviations are very small compared to the calculated properties of the
original simulation, so our machine-learning model would still be able to predict the properties
with reasonable accuracy, given that the strain rate and sizes are not too different.

Table S1: Variation of Young’s modulus (E), tensile strength (σmax) and fracture strain (ϵmax) of several pristine
carbon nanotubes (CNTs) with different strain rates and nanotube lengths.

Parameter
Chirality
(n,m)

Data from
dataset

Strain rate (ps-1) Length (×⊘)
0.0005 0.005 0.01 10 25

ϵmax

(6,6) 0.206 0.2065 0.212 0.22 0.204 0.195
(7,5) 0.188 0.179 0.181 0.198 0.184 0.177
(9,2) 0.149 0.145 0.153 0.154 0.142 0.138
(10,0) 0.139 0.138 0.143 0.147 0.138 0.134

σmax

(6,6) 105.14 105.35 106.38 106.88 105.07 103.33
(7,5) 103.16 100.92 100.62 103.46 101.14 99.16
(9,2) 92.47 90.41 91.66 92.54 89.39 88.8
(10,0) 88.36 88.78 89.59 90.41 88.36 87.45

E

(6,6) 907.49 907.18 907.79 906.55 907.4 905.44
(7,5) 926.53 927.57 925.91 924.54 925.93 924.38
(9,2) 1045.25 1037.95 1043.61 1045.01 1037.66 1035.81
(10,0) 1077.43 1075.94 1076.23 1080.03 1073.71 1062.57

S5. Principal Component Analysis

Principal Component Analysis (PCA) is a dimensionality reduction technique used in statistics
and machine learning (ML). It transforms the original variables into a new set of variables called
principal components (PC). ML regression helps assess how effectively the features contribute to
predicting the data. To illustrate, let’s consider a scenario with two independent variables, namely
features ’n’ and ’θ’ (where ’n’ is one of the chiral indices of a carbon nanotube denoted as (n, m),
and ’θ’ is its chiral angle). The dependent variable is the target, for instance, the diameter of a
CNT measured in Å, as given in the following Table and shown in the accompanying figure. It
must be centralized first if we want to perform PCA on the data. Each variable is presented in
the subsequent table S2 and figure S5 by subtracting its corresponding mean; for example, ’n’ is
centered at 8, and ’θ’ is centered at 9.5.

Table S2: Example Table with 15 Columns and 3 Rows

n 4 7 8 13 N=n-n̄ -4 -1 0 5 PC1 -3.2 -7.1 3.1 7.2

θ (◦) 11 17 6 4 Θ = θ − θ̄ 1.5 7.5 -3.5 -5.5 PC2 2.9 -2.5 1.6 -1.9

d (Å) 4 7 6 10 D=d-d̄ -2.75 0.25 0.75 3.25

Next, we have to find a line for which the sum of the squared distances between each point’s
projected point on the line and the origin is maximum, and the line should pass through the
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Figure S5: Example problem for n vs ’θ’, N vs ’Θ’ and PC1 vs PC2.

origin. Assuming the line has a slope M , the equation of the line is given by y = Mx. The
distance between a point (a, b) and its projected point on this line to the origin is denoted by s1,

where, s1
2(a, b) = a2 + b2 − (Ma−b)2

M2+1
= (Mb+a)2

M2+1
.So, s21(0,−3.5) = (−3.5M)2

M2+1
. Now, for maximization,

we have to find M for which d
dM

(
∑4

i=1 s
2
i ) = 0 is maximum, and that gives M = −1.95. Unit

vector through this line is ϕ1 =

[
ϕ11

ϕ12

]
=

 1√
12+(−1.95)2

−1.95√
12+(−1.95)2

 =

[
0.46
−0.89

]
, where ϕ11 and ϕ12 are

the components of ϕ1 towards the direction of N and Θ, respectively. Perpendicular vector of

ϕ1 can be ϕ2 =

[
ϕ12

−ϕ11

]
=

[
ϕ21

ϕ22

]
=

[
−0.89
−0.46

]
. Hence, the first PC (PC1) of first CNT (n1 =

4, θ1 = 11◦) is
[
ϕ11 ϕ12

] [N1

Θ1

]
= ϕ11N1 + ϕ12Θ1 = −4× 0.46− 1.5× 0.89 = −3.2 and second PC

(PC2) of first CNT is
[
ϕ21 ϕ22

] [N1

Θ1

]
=

[
−0.86 −0.46

] [−4
1.5

]
= 0.89 × 4 − 0.46 × 1.5 = 2.9. If

x1, x2, . . . , xq represent the original variables, and X is the data matrix with q variables (rows) and
p observations (columns), the i-th principal component for m-th observation can be expressed as
PCi,m =

∑q
k=1 ϕik ·xkm, where coefficients ϕik are chosen to maximize the variance of PCi, subject

to the constraint that
∑q

k=1 ϕ
2
ik = 1. Each PC should be orthogonal to each other. In general,

PC = ΦTX =

[
0.46 −0.89
−0.89 −0.46

] [
−4 −1 0 5
1.5 7.5 −3.5 −5.5

]
. In this manner, we have calculated PCs

for all the CNTs, as presented in the final table and illustrated in the last figure. The figure provides
clear insights, indicating that decision-making becomes more straightforward after performing
PCA. In this new dimension of PC, we can roughly infer that if the data falls within the first
quadrant, the diameter (D) is 6 Å; for the second quadrant, D = 4 Å; in the third quadrant,
D = 7 Å; and within the fourth quadrant, D = 10 Å. The decision-making process was not as

straightforward as before. Variance ratio of PC1 can be calculated by V R1 =
∑4

i=1 PC12i∑4
i=1 PC12i+

∑4
i=1 PC22i

≈
90%. So, V R2 = 10%. As PC1 for the considered features captures substantial variance, decisions
can be effectively made using this principal component alone. The high variance in PC1 indicates
its enriched information nature, potentially making it a powerful predictor compared to features
where PC1 with lower variance ratios.
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S6. Decision Tree Hierarchy in Random Forest Regression

In a Random Forest, regression involves combining predictions from multiple decision trees
to provide a more robust and accurate outcome. Each decision tree in the forest independently
predicts the target variable based on a subset of features. The final prediction is often an average
or a weighted combination of these individual tree predictions. Focusing on a single decision tree
within the Random Forest, it utilizes recursive splitting of feature space to make decisions. For
instance, in a dataset with features n and θ predicting d, a decision tree may split the data based
on conditions like ’if n ≤ 5, it predicts d = 10 Å. Otherwise, if n > 5, it considers θ. If θ ≤ 5.5◦, it
predicts d = 4 Å. For n > 5 and θ > 5.5◦, it further refines predictions: θ ≤ 7.5 leads to d = 7 Å,
and θ > 7.5 results in d = 6 Å. Therefore, predicting the diameter for new data with n = 6 and
θ = 14 yields d = 6 Å (as, n > 5, θ > 7.5◦). This hierarchical structure allows the Random Forest
to capture complex relationships in the data, combining the strength of multiple trees for robust
predictions. The process is illustrated in the Fig. S6.

Figure S6: RF model for example problem.

Random Forest Regression, a notable application of Ensemble Learning, operates by aggregat-
ing predictions from multiple Decision Trees. The training process involves bootstrapping, where
subsets of the original dataset are randomly sampled with replacements for each tree, ensuring
diversity. This process, known as bagging, enhances model generalization. The testing process
leverages out-of-bag (OOB) scores, utilizing the samples not included in a tree’s training set for
evaluation. Key features include the ability to handle non-linearity and outliers effectively. Hyper-
parameters, such as the number of trees, depth of trees, and minimum samples per leaf, are crucial
in optimizing the model. Predictions are made by averaging or taking a majority vote of individual
tree predictions. Advantages of Random Forest Regression include robustness against overfitting
due to its ensemble nature, resilience in handling non-linear relationships in data, and effective
management of outliers through the averaging effect. These attributes collectively make Random
Forest Regression a powerful and versatile tool in the realm of machine learning regression tasks.

Table S3 listed the default hyperparameters used in the Random Forest implementation pro-
vided by the sklearn library in Python.

S7. Robustness of Model

The excellent prediction by the RF model for CNTs beyond the radius (¿ 2 nm) limit of the
training dataset is demonstrated by plotting the calculated and predicted stress-strain curves of
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Table S3: Default hyperparameters of Random Forest in scikit-learn

Hyperparameter Default Value Description

n estimators 100 The number of trees in the forest.
criterion ”gini” The function to measure the quality of a

split: ”gini” for Gini impurity, ”entropy” for
information gain.

min samples split 2 The minimum number of samples required to
split an internal node.

min samples leaf 1 The minimum number of samples required to
be at a leaf node.

max features ”sqrt” The number of features to consider when
looking for the best split.

bootstrap True Whether bootstrap samples are used when
building trees.

four pristine and defective CNTs as shown in Figs. S7 and S8, respectively.
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Figure S7: Comparison between the calculated and predicted stress-strain curves, where the curves corresponds to
the pristine CNTs with n = 29 and (a) m = 0, (b) m = 12, (c) m = 16, (d) m = 29.
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Figure S8: Comparison between the calculated and predicted stress-strain curves, where the curves corresponds to
the defective CNTs with n = 29 and (a) m = 0, (b) m = 12, (c) m = 16, (d) m = 29.
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