Supplementary Information

Cesium Lead Bromide Perovskite Nanocrystals Synthesized by

Supersaturated Recrystallization at Room Temperature: Comparison of

One-Step and Two-Step Processes

Dula Adugna Idosa, ^{a,b} Mulualem Abebe,^a Dhakshnamoorthy Mani,^a Jibin Keloth Paduvilan,^c Lishin Thottathi,^d Aparna Thankappan,^e Sabu Thomas^f and Jung Yong Kim *...^{g,h}

^a Faculty of Materials Science and Engineering, Jimma Institute of Technology, Jimma University, Jimma P.O. Box 378, Ethiopia

^b Department of Physics, College of Natural and Computational Science, Mizan-Tepi University, Mizan P.O. Box 260, Ethiopia

^c School of Chemical Sciences, Mahatma Gandhi University, Kottayam 686560, India

^d Department of Physics and Mathematics, Università Cattolica del Sacro Cuore, Via della Garzetta, 48, 25133 Brescia, BS, Italy

^e Department of Physics, Baselius College, Kottayam 686001, India

^fSchool of Energy Materials, Mahatma Gandhi University, Kottayam 686560, India

^g Department of Materials Science and Engineering, Adama Science and Technology University, Adama P.O. Box 1888, Ethiopia

^h Center of Advanced Materials Science and Engineering, Adama Science and Technology University, Adama P.O. Box 1888, Ethiopia

* Correspondence: jungyong.kim@astu.edu.et ORCID ID: https://orcid.org/0000-0002-7736-6858

Electronic Structures of CsPbBr₃ Perovskite:

Density functional theory (DFT)-based first-principle calculations were carried out to determine electronic structures of CsPbBr₃ perovskites. The cubic phase of CsPbBr₃ belonging to the space group Pm3m with (No.221) was taken into account. Figure S1a shows the band structure of CsPbBr₃'s unit cell with cubic structure. Here, both the valence band maximum (VBM) and conduction band minimum (CBM) were located at the k-point **R**, signifying a direct bandgap semiconductor. The bandgap (E_g) was estimated to be 1.44 eV, which is smaller than ~2.3 eV of the experimental result. However, it is consistent with the literature reports based on the *generalized gradient approximation* (GGA) with *Perdew-Berke-Ernzerhof for solids* (PBEsol), i.e., (PBEsol_GGA) method (the typical underestimation, i.e., smaller value, of bandgap).^{S1.S2} Figure S1b demonstrates the projected density of states (PDOS) in which the VBM is dominated by 4p⁵ whereas the CBM by 6p² orbitals.

Figure S1. (a) Electronic band structure of CsPbBr₃. (d) Projected density of states (PDOS) of CsPbBr₃.

Conversion of Water Contact Angle to Surface Energy to Solubility Parameter:

According to Li and Neumann, the water contact angle (θ_c) has a following relationship,

$$\cos\theta_{c} = -1 + 2\sqrt{\gamma_{sv}/\gamma_{lv}} \cdot \exp\left[-\overline{\beta}\left(\gamma_{lv} - \gamma_{sv}\right)^{2}\right]$$
(S1)

where, γ_{lv} , γ_{sv} and γ_{sl} are surface energies for liquid-vapor, solid-vapor, and solid-liquid, respectively, whereas the constant $\overline{\beta}$ is 0.000115 m⁴ mJ⁻², and $\gamma_{lv} = 72.8$ mJ m⁻² for water.^{S3} Hence, when $\theta_c = 10.57^\circ$ for CsPbBr₃,^{S4} $\gamma_{sv} = 71.59391$ mJ m⁻² is calculated by solving Equation (S1) via the Newton-Raphson method. Then, through the relationship $\delta_2 \left[\text{cal}^{1/2} \text{cm}^{-3/2} \right] = 1.829058 \sqrt{\gamma_{sv}}$, ^{S5} δ_{CsPbBr_3} is estimated to be 15.5 cal^{1/2} cm ^{-3/2}. In the same vein, when $\theta_c = 37.57^\circ$ (processed via toluene) and 23.69° (processed via dodecane) for CsPbBr₃ NCs, ^{S6} $\gamma_{sv} = 61.60304$ mJ m⁻² and $\gamma_{sv} =$ 61.59607 mJ m⁻², resulting in $\delta_{CsPbBr_3-NC} = 14.356 \approx 14.36$ cal^{1/2} cm ^{-3/2} and $\delta_{CsPbBr_3-NC} = 14.355$ ≈ 14.36 cal^{1/2} cm ^{-3/2}, respectively. Interestingly, the quasi 2D hybrid lead bromide perovskite (BA₂FA_{n-1}Pb_n Br_{3n+1}, n \rightarrow 1; BA and FA stand for n-butyl ammonium and formamidinium, respectively) was reported to have the solubility parameters of from 15.38 cal^{1/2} cm ^{-3/2} to 15. 60 cal^{1/2} cm ^{-3/2} depending on the processing conditions, verifying the aforementioned data^{S4,S6} are reasonable values.^{S7}

Figure S2. TEM image of unpurified two-step synthesized CsPbBr₃ NCs showing particles distribution. Blue-emitting NC size: $\sim 3.5 \pm 0.4$ nm; Green-emitting NC size: $\sim 13.5 \pm 3.5$ nm.

Figure S3. TEM images of CsPbBr₃ NCs with CuBr₂ (unpurified) synthesized by two-step process with CuBr₂:PbBr₂ (= 1:4 molar ratio) displaying a bimodal distribution of NCs. Blue-emitting NC size: $\sim 3.8 \pm 0.7$ nm; Green-emitting NC size: $\sim 21.4 \pm 9.5$ nm.

References

- S1. D. Yan, T. Shi, Z. Zang, T. Zhou, Z. Liu, Z. Zhang, J. Du, Y. Leng and X. Tang, *Small*, 2019, 15, 1901173.
- S2. Y. Zhang, G. Li, C. She, S. Liu, F. Yue, C. Jing, Y. Cheng and J. Chu, Nano Res., 2021, 14, 2770–2775.
- S3. D. Li, A.W. Neumann, J. Colloid Interface Sci., 1990, 137, 304-307.
- S4. X. Zeng, W. Li, C. Yan, J. Cao, X. Fu and W. Yang, J. Mater. Chem. C, 2021, 9, 15967-15976.
- S5. S. Nilsson, A. Bernasik, A. Budkowski, E. Moons, *Macromolecules*, 2007, 40, 8291–8301.
- S6. A. Gao, J. Yan, Z. Wang, P. Liu, D. Wu, X, Tang, F. Fang, S.Ding, X. Li, J. Sun, M. Cao, L. Wang, L. Li, K, Wang and X. W. Sun, *Nanoscale*, 2020,12, 2569-2577.
- S7. J.Y. Kim, Y. Yoo, J. Kim, H. J. Park, W. Cho, S. Lee, Y.-E. Sung and S. Bae, ACS Appl. Opt. Mater., 2024, 2, 108-117.