Supporting Information

2D Hybrid Nanocomposite: A Promising Anode Material for Lithium-ion Batteries at

High Temperature

Bongu Chandra Sekhar¹, Abdelrahman Soliman¹, Muhammad Arsalan², and Edreese H.

Alsharaeh* 1

¹ College of Science and General Studies, AlFaisal University, PO Box 50927, Riyadh,

11533, Saudi Arabia

² EXPEC Advanced Research Center, Saudi Aramco, P.O. Box 5000, Dhahran, 31311, Saudi

Arabia

Figure S1. XRD of pure MoS₂.

Figure S2. TEM images of pure MoS₂.

Figure S3. Long cycling performance of graphite at current density of 100 m A g⁻¹.

Figure S4. Long cycling performance of MoS_2 at current density of 100 m A g⁻¹.

Figure S5. Long cycling performance of H-BN at current density of 100 m A g⁻¹.

Figure S6. XRD analysis of the 5% BN-G@MoS₂-50@50 composite electrode after cycling at 70 °C.

Figure S7. Nyquist plot of 5% BN-G@MoS₂-50@50 composite electrode after cycles at high temperature.