Supporting Information

Facile Covalent Functionalization of Boron Nitride Nanotubes via Coupling Reaction

Thang Quoc Huynh^{1,2}, Minsung Kang¹ Jeung Gon Kim^{2,3}*, Seokhoon Ahn^{1,3}*

¹ Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), Chudong-ro 92, Bongdong-eup, Wanju-gun 55324, Jeonbuk, Korea

- ²Department of Chemistry and Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonbuk 54896, Republic of Korea
- ³Department of JBNU-KIST Industry-Academia Convergence Research, Jeonbuk National University, Jeonbuk 54896, Republic of Korea
- * indicates the corresponding author.

* Corresponding author: Seokhoon Ahn, Jeung Gon Kim E-mail address: ahn75@kist.re.kr; jeunggonkim@jbnu.ac.kr

Supporting	Table	1.	Reaction	optimizat	ion
------------	-------	----	----------	-----------	-----

	Factors change	Atomic % ^b				
Sample	from standard condition a	В	С	Ν	0	
BNNTs		52.53	4.17	40.73	2.57	
1	H ₂ O/EtOH	50.42	7.21	39.20	3.35	
2	H ₂ O	49.34	7.70	39.22	3.75	
3	EtOH	47.32	10.51	37.80	4.37	
4	Acetone	49.50	7.41	39.54	3.55	
5	CHCl ₃	36.01	20.69	28.22	6.91	
6	200 mg salt	47.05	10.24	38.48	4.23	
7	3 days	47.17	11.13	37.00	4.70	
8	100°C	48.00	9.51	37.22	5.27	

^{a:} Reaction Conditions:100 mg salt, 10 mg BNNTs, and 10 ml solvent, 18h, 55°C. ^{b:} Determined using XPS analysis.

Samples 1-5 were prepared using standard reaction conditions ^a. Samples 6-8 were prepared using standard reaction conditions ^a, with chloroform (CHCl₃) as the solvent and modified specific factor, as indicated in the table. 5 is an optimized sample (highlighted).

Supporting Table 2. Important IR peak

Sample	Important peak		
BNNT	1374, 811, 795		
3a	2920, 2848, 1373, 795		
3b	2924, 2847, 1378, 803		
3c	2925, 2845, 1377, 801		
3d	2925, 2852, 1740, 1374, 798		
3e	2925, 2883, 2194, 1653, 1379, 809		
3f	2960, 1507, 1456, 1373, 940, 806		
3g	2924, 2845, 1377, 800		

Sample		Atomic % ^b				
	В	С	Ν	0	F	Br
BNNTs	52.53	4.17	40.73	2.57		
3 a	49.17	8.40	37.75	4.45		0.22
3b	49.03	8.39	37.64	4.43	0.51	
3c	49.81	6.62	39.70	3.81		
3d	45.82	13.71	36.46	4.01		
3e	44.18	15.65	35.08	5.09		
3f	39.34	22.44	31.20	7.02		
3 g	35.61	16.41	43.27	4.71		

Supporting Table 3. XPS composition of BNNTs and 3a-3g

Sample	Weight loss (%)
3a	8.1
3b	8.2
3c	4.1
3d	11.8
3e	11.8
3f	21.8
3g	13.9

Supporting Table 4. Weight loss (%) of sample 3a - 3g

Supporting Figure 1: SEM of BNNTs, 3a-3g proved the stability of nanotubes after the reaction.

Supporting Figure 2 XPS TGA of sample 3a-3f

Supporting Figure 3 FTIR and magnified FTIR of sample 3a-3f

Supporting Figure 4, estimate dispersion by UV spectra of sample 3a-3f, procedure followed by reference¹

Reference

(1) Lee, S.-H.; Kim, M. J.; Ahn, S.; Koh, B. Purification of Boron Nitride Nanotubes Enhances Biological Application Properties. *Int. J. Mol. Sci.* **2020**, *21* (4), 1529. https://doi.org/10.3390/ijms21041529.