Supplementary Information (SI) for Nanoscale Advances. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Om Prakash^{1#}, Abhijith T^{2,3#}, Priya Nagpal⁴, Vivekanandan Perumal⁴, Supravat Karak², Udai B. Singh⁵, Santanu Ghosh^{1*}

¹Nanostech Laboratory, Department of Physics, Indian Institute of Technology Delhi, New Delhi 110016, India.

²Organic and Hybrid Electronic Device Laboratory, Department of Energy Science and Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India.

³Department of Nanoscience and Technology, PSG Institute of Advanced Studies, Peelamedu, Coimbatore, Tamil Nadu 641004, India.

⁴Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi 110016, India.

⁵Department of Physics, Deen Dayal Upadhyay Gorakhpur University, Gorakhpur, 273009, India.

* Corresponding author email: <u>santanu1@physics.iitd.ac.in</u>

[#] Om Prakash and Abhijith T equally contributed to this work

Figure S1. The extinction spectra of Au NPs, WS₂ nanoflakes and Au-WS₂ nanohybrids.

Enhancement factor calculation

The EF was calculated for all Raman modes of 10^{-9} M R6G concentration. I_{SERS} was taken as the intensity value of the SERS signal for mentioned Raman mode when 2 μ L of 10^{-6} M R6G concentration drop casted on optimized SERS-active substrate.

$$EF = \frac{I_{SERS} \times N_{RAMAN}}{I_{RAMAN} \times N_{SERS}}$$
(1)

$$EF = \frac{I_{SERS} \times h\rho \pi r^2}{I_{RAMAN} \times McV}$$
(2)

$$h = \frac{2\lambda}{\left(N.A.\right)^2} \tag{3}$$

M and ρ of R6G are 479.02 g/mol and 1.26 g/cm³ respectively. h is the depth of laser penetration and N.A. is the numerical aperture of the objective lens. enhancement factor calculations corresponding to the 1512 cm⁻¹ peak is shown below. All the parameters are given in the main draft. The EF calculations correspond to all the peaks shown in Table 1 in the main draft.

$$h = \frac{2 \times 785 \ nm}{(0.5)^2} = 6.28 \ \mu m$$

$$EF = \frac{\frac{9043}{20 \ mW \times 20 \ s \times 3} \times 6.28 \ \mu m \times 1.26 \frac{g}{cm^3} \times \pi \times 2^2 \ mm^2}{\frac{50}{20 \ mW \times 20 \ s \times 3} \times 479.02 \ \frac{g}{mol} \times 10^{-9} \frac{mol}{L} \times 2 \ \mu L}$$

$$EF = 1.80 \times 10^9$$

*Figure S2. Raman Spectra of R6G on bare Si substrate and with Au-WS*₂*nanohybrid.*