Electronic Supplementary Information for

Impact of Morphology and Oxygen Vacancy Content in Ni, Fe co-doped

Ceria for Efficient Electrocatalyst Based Water Splitting

Abhaya Kumar Mishra^a, Joshua Willoughby^a, Shanna L. Estes^b, Keliann Cleary Kohler^c, Kyle S. Brinkman^a*

Author affiliation

* Corresponding authors

^a Dr. K. S. Brinkman Department of Materials Science and Engineering Clemson University Clemson, SC 29634(USA), E-mail: <u>ksbrink@clemson.edu</u>

^b Dr. S.L. Estes Department of Environmental Engineering and Earth Sciences Clemson University Anderson, SC 29625(USA), E-mail: <u>sestes@g.clemson.edu</u>

^c Keliann Cleary Kohler *Advanced* Materials Research Laboratory (AMRL) Clemson University, Anderson, SC 29625(USA), E-mail: <u>kelliak@clemson.edu</u>

Fig.S1 survey XPS spectrum of pristine CeO2 nanoplates synthesized by modified solgel method.

Fig.S2 Region XPS spectra of Ni + Fe co-doped CeO_2 (a) Ni 2p (b) Fe 3p.

Fig.S3 Histogram for comparison of overpotential η_{10} and Tafel slope of the as-synthesized electrode for (a) HER and (b)OER respectively.

Fig S4. TEM image of Ni + Fe doped CeO₂ samples after HER and OER stability tests for 20 hours at 10 mA cm⁻² and 50 mA cm⁻².

Fig.S5 Cyclic voltammograms of (a) pristine CeO₂ (b) 20 mol% Ni doped CeO₂ (C) 20% Fe doped CeO₂.