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Transmission electron microscopy of MNPs

Supplementary Figure 1. Transmission Electron Microscopy (TEM) images of (A) NF, (B) GIONF, and (C) ferucarbotran MNP formulations 
used in this study. Scale bars represent 100 nm.

Physicomagnetic properties of MNPs

Supplementary Table 1. Physicomagnetic characterization of NF, GIONF, and ferucarbotran.

MNP Core size (nm) from 
TEM

Hydrodynamic size 
(nm) from DLS

Saturation magnetization 
Ms (emu.g-1) *

Susceptibility χ *

NF 43.9 177±64 69 128
GIONF 50 160±76 69 128

Ferucarbotran 14.2 69±29 96 0.135

*Extracted from references [1-3].
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MNP signal amplitude and FWMH values of MNPs

Supplementary Table 2. Signal amplitude and FWHM values for different MNPs in water (0% gelatin or 0% BSA).

MNP Concentration 
(µg/mL)

Quantity (μg) Signal amplitude 
(a.u.)

SD FWHM 
(mT)

SD

NF 25 12.5 1.28 0.29 12 0.1
50 25 2.8 0.27 11 0.3

100 50 4.33 0.59 12 1.5
GIONF 25 12.5 1.42 0.01 12 0.04

50 25 2.74 0.01 12 0.1
100 50 4.4 0.02 14 0.1

Ferucarbotran 25 12.5 0.68 0.01 11 0.1
50 25 1.26 0.04 11 1.3

100 50 2.74 0.03 12 0.03
GIONF* 50 5 0.51 0.02 10 0.2

Ferucarbotran* 100 10 0.62 0.02 13 0.4

*Baseline measurements in water (0% BSA content).

Compressibility error calculations 

When a “quantity” depends on measured variables, the uncertainty (standard deviation) in the quantity can be 
estimated by considering how sensitive the quantity is to changes in those variables, and then combining the 
uncertainties in the variables [4, 5].

Compressibility formula

The compressibility βs is given by: 

 (1)
𝛽𝑠=

1

𝐶2 × 𝜌

Where C is the velocity and ρ is the density.

Error propagation

For a function βs(C, ρ), the uncertainty in βs due to uncertainties in C and ρ can be estimated using the partial 
derivatives with respect to each variable:

   (2)
𝜎 2𝛽𝑠

= (
∂𝛽𝑠
∂𝐶

)2𝜎2𝐶+ (
∂𝛽𝑠
∂𝜌
)2𝜎2𝜌

where σC is the standard deviation in velocity and σρ is the standard deviation in density.

Partial derivatives
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1. The partial derivative with respect to C is:

                                                       (3)

∂𝛽𝑠
∂𝐶

=
∂
∂𝐶( 1

𝐶2 × 𝜌) =‒ 2

𝐶3 × 𝜌

2. The partial derivative with respect to ρ is:

 ,  (4)

∂𝛽𝑠
∂𝜌

=
∂
∂𝜌( 1

𝐶2 × 𝜌) =‒ 2

𝐶2 × 𝜌2
∂𝛽𝑠
∂𝜌

=
∂
∂𝜌( 1

𝐶2 × 𝜌) =‒ 1

𝐶2 × 𝜌2

Simplifying for dominant contribution:

Given the typical situation where the uncertainty in velocity σC  is much more significant than the uncertainty in 
density σp, the term involving σp  is often negligible. Hence, the primary contribution to σβs  comes from the 
uncertainty in C.

Thus, we approximate:

                                                                  (5)
𝜎𝛽𝑠

≈ |∂𝛽𝑠∂𝐶 |𝜎𝑐= | ‒ 2

𝐶3 × 𝜌|𝜎𝑐=
2 × 𝜎𝑐

𝐶3 × 𝜌

Final formula

The formula used for the standard deviation of compressibility is:

                                                              (6)
𝜎𝛽𝑠

=
2 × 𝜎𝑐

𝐶3 × 𝜌

This formula allows an estimation of how the uncertainty in the velocity σC propagates into uncertainty in the 
calculated compressibility βs. In here, C is the average measured velocity and σC is the standard deviation of these 
velocity measurements, reflecting the variability or uncertainty in the velocity data.

When measuring the velocity multiple times, the average velocity C and the spread of those measurements around 
the average can be calculated, yielding the standard deviation σC . This standard deviation quantifies how much the 
individual velocity measurements differ from the average value. In the error propagation formula for 
compressibility βs, σC was used to estimate how the uncertainty in the velocity measurements affects the 
uncertainty in the calculated compressibility.
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Viscosity mesurements of gelatin and BSA

Supplem
entary Figure 2. Viscosity measurements of (A) gelatin and (B) BSA hydrogel samples at various concentrations. Both sets of hydrogel 
samples exhibit shear-thinning behavior, where viscosity decreases as the shear rate increases. Error bars represent standard deviations 
across triplicate measurements.
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Supplementary Figure 3. (A) MPI signal amplitude and (B) FWHM values for ferucarbotran at different concentrations (25, 50, and 100 
μg/mL) in glycerol and water. Data were obtained at room temperature and are shown as mean±SD for three independent experiments. 
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Hydrodynamic size of ferucarbotran in glycerol and water

 

Supplementary Figure 4. Number-based (A) and intensity-based (B) hydrodynamic size distribution of ferucarbotran in glycerol and water.
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Supplementary Figure 5. Experimental setup for measurement of the MPI signal amplitudes of ferucarbotran (100 µg Fe/mL) at different 
temperatures (10-55 ℃). (A) Holder containing ferucarbotran and water vials, allowing water to flow in and out to regulate temperature. 
(B) A thermocouple thermometer inserted into the water vial to monitor the temperature of ferucarbotran indirectly. (C) Vials are secured 
in the holder for stable temperature control. (D) Water pump used to circulate water at different temperatures for precise regulation of 
the experimental conditions. (E) Real-time temperature monitoring display provides continuous tracking of temperature changes over 
time.
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