Supplementary Information

Synergistic antioxidant and antibacterial effect of Zn-ascorbate metal-organic framework loaded with Marjoram essential oil

Rana R. Haikal, Noha El Salakawy, Alaa Ibrahim, Shaimaa L. Ali, and Wael Mamdouh*

Department of Chemistry, School of Sciences and Engineering, The American University in Cairo (AUC), AUC Avenue, P.O. Box 74, New Cairo 11835, Egypt

No.	Compound	t _R (min)	% Peak area
1	Thujene	8.11	1.27
2	α-Pinene	8.31	0.88
3	Camphene	8.79	0.04
4	Sabinene	9.67	3.20
5	2-β-Pinene	9.75	0.43
6	β-Myrcene	10.32	0.89
7	α-Terpinene	11.19	4.38
8	<i>o</i> -Cymene	11.52	15.00
9	D-Limonene	11.63	3.18
10	Eucalyptol	11.70	0.21
11	γ-Terpinene	12.74	7.82
12	<i>m</i> -Cresol	13.58	0.12
13	α-Terpinolene	13.78	2.42
14	cis-Sabinene hydrate	14.13	2.28
15	Linalool	14.24	1.37
16	cis-p-Menth-2-en-1-ol	14.97	0.83
17	1-Terpineol	15.64	0.75
18	Terpinene-4-ol	17.14	32.72
19	<i>p</i> -Cymen-8-ol	17.32	0.91
20	α-Terpineol	17.51	4.49
21	Isopulegol	17.65	0.48
22	trans-p-Menth-1-en-3-ol	18.07	0.62
23	Linalyl anthranilate	19.76	2.64
24	1,8-Cineole	21.08	0.32
25	Carvacrol	21.36	0.44
26	4,4-Dimehtylpent-2-enal	21.92	0.58
27	<i>cis</i> -Carveol	23.52	0.15
28	Caryophyllene	25.12	2.54
29	(+)-Aromadendrene	25.72	0.11
30	1,4-Dihydroxy- <i>p</i> -menth-2-ene	26.95	0.47
31	Ledene	27.46	0.34
32	(+)-Spathulenol	30.03	0.67

Table S1. Composition of marjoram essential oil (MEO) as purchased (analyzed by GC-MS).

33	(-)-Caryophyllene oxide	30.21	0.91
	Total identified		93.46

Figure S1. (a) N_2 sorption isotherms and (b) pore size distributions of ZnAsc and MEO@ZnAsc.

Figure S2. First derivative of the TGA profiles of ZnAsc and MEO@ZnAsc.

Method	ZnAsc	MEO@ZnAsc
SEM	20.9	23.3
TEM	18.6	18.1
XRD	16.5	15.6

Table S2. Crystallite/particulate size determination by different methods (nm).

мог	Inhibition zone diameter (mm)		7.0	Def
MOF	E. coli	S. aureus	- Zn wt%	Ref.
Zn-MOF	-	37.32	-	1
GR-MOF-8	15.96	20.20	29	2
Ac MOF-5	10	16	34	3
Ac Zn-MOF	14	16	26.4	3
Ac TMU-3	12	14	16.2	3
IEF-24	5.4	-	14.1	4
Zn-MOF	12.22	10.10	-	5
Zn-MOF	8.6	17	24.6	6
[Zn(μ-4-hzba) ₂] ₂ ·4(H ₂ O)	-	14.6	13.9	7
ZnAsc	10.33	8	50	This work

 Table S3.
 Antibacterial activities of Zn-based MOFs.

Figure S3. Dose response curves of the different samples against *E. coli* (a) and *S. aureus* (b) using broth microdilution method (dots represent experimental data and lines represent sigmoidal data fitting from which IC₅₀ values were calculated).

References

- 1. X. Xu, M. Ding, K. Liu, F. Lv, Y. Miao, Y. Liu, Y. Gong, Y. Huo and H. Li, *Front Chem*, 2023, **11**.
- 2. S. Rojas, A. García-García, T. Hidalgo, M. Rosales, D. Ruiz-Camino, P. Salcedo-Abraira, H. Montes-Andrés, D. Choquesillo-Lazarte, R. Rosal, P. Horcajada and A. Rodríguez-Diéguez, *Journal*, 2022, **12**.
- 3. M. Nakhaei, K. Akhbari, M. Kalati and A. Phuruangrat, *Inorganica Chimica Acta*, 2021, **522**, 120353.
- 4. S. N. Lelouche, L. Albentosa-González, P. Clemente-Casares, C. Biglione, A. Rodríguez-Diéguez, J. Tolosa Barrilero, J. C. García-Martínez and P. Horcajada, *Journal*, 2023, **13**.
- 5. C. Yuan, Y. Miao, Y. Chai, X. Zhang, X. Dong and Y. Zhao, *Journal*, 2023, 28.
- 6. F. Akbarzadeh, M. Motaghi, N. P. S. Chauhan and G. Sargazi, *Heliyon*, 2020, **6**, e03231.
- 7. J. Restrepo, Z. Serroukh, J. Santiago-Morales, S. Aguado, P. Gómez-Sal, M. E. G. Mosquera and R. Rosal, *European Journal of Inorganic Chemistry*, 2017, **2017**, 574-580.