Supplementary Information (SI) for Nanoscale Advances. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Green and efficient synthesis of 5-amino-1*H*-pyrazole-5-carbonitriles utilizing novel modified LDH

Sarieh Momeni, Ramin Ghorbani-Vaghei*

Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, 6517838683, Hamadan, Iran

*Corresponding author; E-mail: rgvaghei@yahoo.com & ghorbani@basu.ac.ir

General procedure for the one-pot synthesis of 5-amino-1*H*-pyrazole-5-carbonitriles

In a standard experimental procedure, the following components were combined in a 5 mL roundbottomed flask: In a test tube containing phenyl hydrazine (1 mmol), benzaldehyde derivatives (1 mmol), malononitrile (1 mmol), and the LDH@PTRMS@DCMBA@CuI catalyst (0.05 g), the mixture was stirred at 55 °C using a magnetic stirrer for an appropriate period of time. The advancement of the reaction was tracked using TLC (n-hexane/ethyl acetate: 0.5:0.5 mL) to observe the transformation of reactants into products. Once the reaction reached completion and the desired compound was obtained, the mixture was allowed to cool to room temperature. To isolate the catalyst, 3 mL of either hot ethanol or chloroform was introduced into the reaction mixture. Subsequently, the catalyst (LDH@PTRMS@DCMBA@CuI) was separated through centrifugation, thoroughly washed, and subsequently dried in an oven at 60 °C to remove any residual solvent and moisture. The solvent of the reaction mixture was evaporated, and the products were recrystallized with ethanol, yielding the compounds with high yield. The products were identified using FTIR, ¹H NMR, and ¹³C NMR spectra, and the melting points of all products were recorded.

Spectral Data:

S1. 5-amino-3-(4-chlorophenyl)-1-phenyl-1*H*-pyrazole-4-carbonitrile (4b)

M.p. 190-192 °C, FT-IR (KBr, v cm⁻¹): 3447, 3346, 3313, 3208, 3055, 2928, 2206, 1632, 1600, 1519, 1489, 1259, 1135, 1084, 914, 829, 749, 509; ¹H NMR (250 MHz, CDCl₃) δ 7.62 (t, J = 11.5 Hz, 5H), 7.40 – 7.28 (m, 3H), 7.11 (d, J = 8.0 Hz, 2H), 6.91 (d, J = 7.7 Hz, 1H); ¹³C NMR (63 MHz, CDCl₃) δ 153.12, 144.40, 142.44, 135.81, 133.90, 130.91, 129.46, 129.31, 129.03, 128.81, 128.33, 127.25, 120.33, 112.79.

S2. 5-amino-3-(3-nitrophenyl)-1-phenyl-1*H*-pyrazole-4-carbonitrile (4c)

M.p. 128-130 °C, FT-IR (KBr, v cm⁻¹): 3442, 3305, 3221, 3058, 2928, 2205, 1600, 1583, 1514, 1485, 1258, 1139, 905, 822, 758, 511; ¹H NMR (250 MHz, CDCl₃) δ 8.44 (s, 1H), 8.11 (d, J = 8.2 Hz, 1H), 7.98 (d, J = 7.9 Hz, 1H), 7.70 (s, 2H), 7.53 (t, J = 8.0 Hz, 1H), 7.32 (t, J = 7.8 Hz, 2H), 7.15 (d, J = 8.0 Hz, 2H), 6.94 (t, J = 7.2 Hz, 1H); ¹³C NMR (63 MHz, CDCl₃) δ 148.69, 143.90, 137.35, 134.64, 133.90, 131.41, 130.19, 129.79, 129.47, 124.51, 122.54, 120.91, 112.99.

S3. 5-amino-3-(4-methoxyphenyl)-1-phenyl-1H-pyrazole-4-carbonitrile (4e)

M.p. 107-109 °C, FT-IR (KBr, v cm⁻¹): 3445, 3340, 3315, 3210, 3055, 2954, 2206, 1597, 1508, 1441, 1295, 1246, 1175, 1129, 1028, 821, 684, 532; ¹H NMR (250 MHz, CDCl₃) δ 8.27 – 7.46 (m, 4H), 7.31 (s, 1H), 7.25 (s, 1H), 7.10 (d, J = 7.8 Hz, 2H), 6.91 (d, J = 8.6 Hz, 2H), 6.86 (s, 1H), 3.84 (s, 3H); ¹³C NMR (63 MHz, CDCl₃) δ 160.08, 151.20, 144.52, 137.98, 131.96, 130.22, 129.21, 127.67, 119.87, 114.27, 114.06, 112.76, 55.28.

S4. 5-amino-3-(4-bromophenyl)-1-phenyl-1*H*-pyrazole-4-carbonitrile (4f)

M.p. 161-163 °C, FT-IR (KBr, v cm⁻¹): 3447, 3345, 3314, 3218, 3047, 2954, 2836, 2204, 1588, 1508, 1440, 1295, 1246, 1129, 1175, 1028, 921, 839, 746, 531; ¹H NMR (250 MHz, CDCl₃) δ 7.59 (d, J = 4.1 Hz, 2H), 7.51 (d, J = 3.8 Hz, 4H), 7.41 – 7.26 (m, 2H), 7.11 (d, J = 7.4 Hz, 2H), 6.91 (d, J = 6.3 Hz, 1H); ¹³C NMR (63 MHz, CDCl₃) δ 144.32, 135.79, 134.27, 132.42, 131.96, 131.69, 131.22, 130.12, 129.29, 128.28, 127.48, 122.10, 120.32, 112.76.

S5. 5-amino-3-(2,4-dichlorophenyl)-1-phenyl-1H-pyrazole-4-carbonitrile (4g)

M.p. 160-161 °C, FT-IR (KBr, v cm⁻¹): 3414, 3311, 3200, 3052, 2210, 1600, 1576, 1504, 1445, 1262, 1233, 1134, 1070, 913, 836, 754, 508; ¹H NMR (250 MHz, CDCl₃) δ 8.01 (d, *J* = 6.8 Hz, 4H), 7.33 (d, *J* = 16.4 Hz, 2H), 7.12 (d, *J* = 7.9 Hz, 2H), 7.03 (s, 1H), 6.92 (t, *J* = 7.3 Hz, 1H); ¹³C NMR (63 MHz, DMSO) δ 157.05, 145.07, 132.88, 132.53, 132.08, 131.49, 131.27, 130.69, 129.62, 128.70, 128.11, 127.38, 120.00, 112.75.

S6. 5-amino-3-(4-hydroxyphenyl)-1-phenyl-1*H*-pyrazole-4-carbonitrile (4h)

M.p. 206-208 °C, FT-IR (KBr, v cm⁻¹): 3479, 3368, 3347, 3233, 3055, 2923, 2210, 1642, 1597, 1520, 1448, 1274, 1228, 1172, 918, 829, 697, 513. ¹H NMR (250 MHz, DMSO-*d*₆) δ 9.74 (s, 1H), 7.98 – 7.62 (m, 2H), 7.47 (d, *J* = 27.5 Hz, 5H), 6.90 (s, 2H), 6.67 (s, 2H). ¹³C NMR (63 MHz, DMSO) δ 158.77, 153.17, 150.94, 137.93, 129.92, 128.30, 127.89, 126.09, 124.65, 122.59, 115.97, 115.38.

S7. 5-amino-3-(4-fluorophenyl)-1-phenyl-1*H*-pyrazole-4-carbonitrile (4i)

M.p. 163-165 °C, FT-IR (KBr, v cm⁻¹): 3462, 3345, 3312, 3215, 3055, 2207, 1600, 1577, 1504, 1446, 1262, 1233, 1135, 1092, 836, 753, 693; ¹H NMR (250 MHz, DMSO-*d*6) δ 8.28 (s, 1H), 8.11 – 7.74 (m, 2H), 7.55 (s, 2H), 7.43 (d, *J* = 6.9 Hz, 2H), 7.32 (d, *J* = 9.3 Hz, 2H), 6.87 (s, 2H); ¹³C NMR (63 MHz, DMSO) δ 164.21, 160.41, 153.37, 145.75, 135.79, 132.89, 129.97, 129.53, 128.57, 127.93, 124.77, 119.19, 116.56, 116.18, 115.86, 112.44.

S8. 5-amino-1-phenyl-3-(p-tolyl)-1*H*-pyrazole-4-carbonitrile (4j)

M.p. 116-118 °C, FT-IR (KBr, v cm⁻¹): 3460, 3422, 3351, 3172, 3036, 2930, 2225, 1650, 1605, 1588, 1577, 1451, 1414, 1376, 1222, 1192, 939, 815, 615, 521; ¹H NMR (250 MHz, DMSO-*d*6) δ 8.46 (s, 2H), 7.85 (s, 2H), 7.62 – 7.17 (m, 5H), 6.75 (s, 2H), 2.39 (s, 3H); ¹³C NMR (63 MHz, DMSO) δ 161.77, 156.69, 146.13, 133.17, 131.13, 130.61, 129.92, 129.20, 128.91, 128.10, 124.40, 114.85, 21.91.

S9. 5-amino-3-(4-nitrophenyl)-1-phenyl-1*H*-pyrazole-4-carbonitrile (4d)

M.p. 163-164 °C, FT-IR (KBr, v cm⁻¹): 3419, 3355, 3315, 3196, 3028, 2210, 1635, 1602, 1566, 1522, 1443, 1398, 1288, 1261, 1066, 1026, 929, 882, 756, 751, 508; ¹H NMR (250 MHz,) δ 8.01 (s, 2H), 7.49 (d, *J* = 23.5 Hz, 2H), 7.19 (s, 5H), 6.73 (s, 2H); ¹³C NMR (63 MHz, DMSO) δ 165.00, 150.65, 145.71, 135.97, 134.75, 134.50, 131.58, 130.28, 129.46, 127.04, 123.32, 122.63, 119.24, 112.49.

S10. 5-amino-1,3-diphenyl-1*H*-pyrazole-4-carbonitrile (4a)

M.p. 159-161°C, FT-IR (KBr, v cm⁻¹): 3450, 3313, 3195, 2209, 1637, 1593, 1566, 1494, 1443, 1261, 1136, 1066, 929, 882, 756, 692, 508; ¹H NMR (250 MHz, DMSO-*d*6) δ 7.83 (s, 2H), 7.63 – 7.46 (m, 2H), 7.39 – 7.16 (m, 4H), 7.04 (s, 2H), 6.73 (s, 2H); ¹³C NMR (63 MHz, DMSO) δ 153.38, 145.76, 136.90, 129.95, 129.54, 129.26, 129.07, 128.34, 126.44, 126.06, 124.79, 119.16, 112.45.

S11. 4-(5-amino-4-cyano-1-phenyl-1*H*-pyrazol-3-yl)phenyl benzoate (4k)

M.p. 225-227 °C, FT-IR (KBr, v cm⁻¹): 3485, 3387, 3291, 3179, 3060, 2895, 2201, 1733, 1643, 1570, 1500, 1450, 1410, 1355, 1311, 1249, 1129, 1081, 918, 885, 815, 752, 701, 531, 509; ¹H NMR (250 MHz, DMSO-*d*6) δ 8.26 – 8.00 (m, 2H), 7.87 (s, 1H), 7.80 – 7.68 (m, 2H), 7.58 (s, 5H), 7.29 (s, 2H), 7.07 (s, 2H), 6.73 (s, 2H); ¹³C NMR (63 MHz, DMSO) δ 160.64, 153.35, 151.82, 146.13, 132.90, 131.56, 130.74, 129.98, 129.53, 128.53, 124.80, 122.62, 119.14, 115.92.

Fig. S1. The FTIR spectrum of 5-amino-3-(4-chlorophenyl)-1-phenyl-1H-pyrazole-4-carbonitrile

Fig. S2. The ¹H NMR spectrum of 5-amino-3-(4-chlorophenyl)-1-phenyl-1*H*-pyrazole-4-carbonitrile in CDCl₃ solvent

Fig. S3. The ¹³C NMR spectrum of 5-amino-3-(4-chlorophenyl)-1-phenyl-1*H*-pyrazole-4-carbonitrile in CDCl₃ solvent

Fig. S4. The FTIR spectrum of 5-amino-3-(3-nitrophenyl)-1-phenyl-1H-pyrazole-4-carbonitrile

Fig. S5. The ¹H NMR spectrum of 5-amino-3-(3-nitrophenyl)-1-phenyl-1*H*-pyrazole-4-carbonitrile in CDCl₃ solvent

carbonitrile in CDCl₃ solvent

Fig. S7. The FTIR spectrum of 5-amino-3-(4-methoxyphenyl)-1-phenyl-1*H*-pyrazole-4-carbonitrile

carbonitrile in CDCl₃ solvent

Fig. S10. The FTIR spectrum of 5-amino-3-(4-bromophenyl)-1-phenyl-1*H*-pyrazole-4-carbonitrile

Fig. S11. The ¹H NMR spectrum of 5-amino-3-(4-bromophenyl)-1-phenyl-1*H*-pyrazole-4-carbonitrile in CDCl₃ solvent

Fig. S12. The ¹³C NMR spectrum of 5-amino-3-(4-bromophenyl)-1-phenyl-1*H*-pyrazole-4-carbonitrile in CDCl₃ solvent

Fig. S13. The FTIR spectrum of 5-amino-3-(2,4-dichlorophenyl)-1-phenyl-1*H*-pyrazole-4-carbonitrile

Fig. S14. The ¹H NMR spectrum of 5-amino-3-(2,4-dichlorophenyl)-1-phenyl-1*H*-pyrazole-4-carbonitrile in CDCl₃ solvent

Fig. S15. The ¹³C NMR spectrum of 5-amino-3-(2,4-dichlorophenyl)-1-phenyl-1*H*-pyrazole-4-carbonitrile in DMSO solvent

Fig. S16. The FTIR spectrum of 5-amino-3-(4-hydroxyphenyl)-1-phenyl-1*H*-pyrazole-4-carbonitrile

Fig. S17. The ¹H NMR spectrum of 5-amino-3-(4-hydroxyphenyl)-1-phenyl-1*H*-pyrazole-4-carbonitrile in DMSO solvent

Fig. S18. The ¹³C NMR spectrum of 5-amino-3-(4-hydroxyphenyl)-1-phenyl-1*H*-pyrazole-4 carbonitrile in DMSO solvent

Fig. S19. The FTIR spectrum of 5-amino-3-(4-fluorophenyl)-1-phenyl-1*H*-pyrazole-4-carbonitrile

Fig. S20. The ¹H NMR spectrum of 5-amino-3-(4-fluorophenyl)-1-phenyl-1*H*-pyrazole-4-carbonitrile in DMSO solvent

Fig. S21. The ¹³C NMR spectrum of 5-amino-3-(4-fluorophenyl)-1-phenyl-1*H*-pyrazole-4-carbonitrile in DMSO solvent

Fig. S22. The FTIR spectrum of 5-amino-1-phenyl-3-(p-tolyl)-1H-pyrazole-4-carbonitrile

Fig. S23. The ¹H NMR spectrum of 5-amino-1-phenyl-3-(p-tolyl)-1*H*-pyrazole-4-carbonitrile in DMSO solvent

DMSO solvent

Fig. S25. The FTIR spectrum of 5-amino-3-(4-nitrophenyl)-1-phenyl-1H-pyrazole-4-carbonitrile

g. 527. The ¹³C NMR spectrum of 5-amino-3-(4-nitrophenyl)-1-phenyl-1*H*-pyrazole carbonitrile in DMSO solvent

Fig. S28. The FTIR spectrum of 5-amino-1,3-diphenyl-1H-pyrazole-4-carbonitrile

Fig. S29. The ¹H NMR spectrum of 5-amino-1,3-diphenyl-1*H*-pyrazole-4-carbonitrile in DMSO solvent

solvent

Fig. S31. The FTIR spectrum of 4-(5-amino-4-cyano-1-phenyl-1H-pyrazol-3-yl)phenyl benzoate

Fig. S32. The ¹H NMR spectrum of 4-(5-amino-4-cyano-1-phenyl-1*H*-pyrazol-3-yl)phenyl benzoate in DMSO solvent

benzoate in DMSO solvent