Supplementary Material

Recent developments in the bio-mediated synthesis of CoFe₂O₄ nanoparticles using plant extracts for environmental and biomedical applications

Giang Thanh Tran,^{1,2} Luan Minh Nguyen,^{3,4} Thuy Thi Thanh Nguyen,² Dai Hai

Nguyen,³ Thuan Van Tran^{1,*}

¹ Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam.

² Nong Lam University Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam.

³ Institute of Chemical Technology, Vietnam Academy of Science and Technology, 1A TL29, District 12, Ho Chi Minh City, 700000, Viet Nam.

⁴ Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, 100000, Viet Nam.

Correspondence

* To whom correspondence should be addressed:

Thuan Van Tran (Email: tranuv@gmail.com; tranvt@ntt.edu.vn)

Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam.

Tel: (+84)-028-3941-1211, Fax: (+84)-028-39-404-759.

Table S1. Green synthesis of $CoFe_2O_4$ nanoparticles using plant extracts and severalphysicochemical properties (particle size, morphology, bandgap, surface chemistry,magnetization) of green $CoFe_2O_4$ nanoparticles.

Plant species	Plant tissues	Heating treatment	Calcination time	Surface area (m ² /g)	Particles size (nm)	Morphology	Band gap (eV)	Magneti zation (emu/g)	Ref.
Okra (A. esculentus)	Fruit	1000 °C	3 h	-	55	Spherical	1.96	65.31	1
Okra (A. esculentus)	Fruit	Microwave heating	15 min	-	47	Spherical	2.09	65	1
Olea europaea	Leaf	700 °C	3 h	-	15–30	Spherical	-	58.55	2
Hibiscus rosa- sinensis	Flower	800°C	1 h	-	18.8	-	-	37.19	3
Verjuice	Fruits	600-800 °C	3 h	-	8-42	Polyhedral	-	81.2	4
Hibiscus rosa- sinensis	Flower	1000 °C	3 h	-	56	Spherical	2.06	56.43	5
Hibiscus rosa- sinensis	Flower	Microwave heating	15 min	-	43	Spherical	1.87	55.29	5
Hibiscus rosa-	Leaf	300 °C	2 h	-	-	Spherical	2	104.2	6

sinensis

fresh

Syzygium aromaticu m	Leaf	600 °C	2 h	-	75	Bipyramid	-	-	7
Aloe vera	Leaf	400 °C	3 h	-	50-65	Bud-like	-	72.23	8
Opuntia dilenii haw	-	1000 °C	3 h	-	59	Spherical	2.01	68.76	9
Opuntia dilenii haw	-	Microwave heating	15 min	-	48	-	1.93	77.29	9
Hibiscus rosa- sinensis	Leaf and flower	800 °C	2 h	-	23.85	Spherical	-	-	10
Tamarindu s indica	Fruit	500 °C	1 h	-	13	-	-	52.12	11
Aloe Vera	Leaf	220 °C	12 h	-	8	Spherical	-	33.43	12
Moringa Oleifera	Leaf	600 °C	5.5 h	-	6.4	Spherical	3.5	37.6	13
Ginger	Root	800 °C	1 h	-	20–50	Spherical	1.44	-	14
Cardamom	Seeds	800 °C	1 h	-	20–50	Spherical	1.36	_	14

Alhagi maurorum (camelthor n)	-	600-800 °C	-	-	27-58	Bipyramid	3.78- 4.24	66.5- 81.1	15
Lemon	Fruits	700 °C	3 h	-	50-100	Semi- spherical	-	75.7	16
Okra (A. esculentus)	Fruits	600 °C	3 h	-	32-58	-	-	55.8	17
Aloe vera	Leaf	500 °C	2 h	72.1	27	Flake-like	2.1	25.46	18
Aloe vera	Leaf	Microwave heating	10 min	93.5	15	Spherical	2.1	77.62	18
Carissa carandas	Stem	500 °C	2 h	136.0	35	Spherical	4.5	-	19
Erythrina variegata	Leaf	900 °C	3 h	-	30-38	Cubic	1.86	-	20
Bean Pods	Fruit	180 °C	6 h	-	1.8	Spherical	-	-	21
Pedalium murex	Leaf	Microwave heating	12 min	157.7	42	Spherical	1.76	84.1	22

Materials	Plant	Applications	Findings	Ref.
CoFe ₂ O ₄	Okra extract	Antimicrobial	Zone of inhibition: <i>Staphylococcus aureus</i> (14 mm), <i>Micrococcus luteus</i> (8 mm), <i>Enterobacter aerogenes</i> (9 mm), <i>Yersinia</i> <i>enterocolitica</i> (16 mm), <i>Aspergillus aureus</i> (9 mm), <i>Candida Krusei</i> (15 mm)	1
CoFe ₂ O ₄	Hibiscus rosa-sinensis	Antimicrobial	Zone of inhibition: <i>Escherichia coli ATCC</i> 8739 (8 mm), <i>Enterococcus faecalis ATCC</i> 29212 (10 mm), <i>Bacillus subtilis ATCC</i> 6633 (6 mm), <i>Candida albicans ATCC</i> 26790 (6 mm)	3
			Minimum inhibitory concentration: <i>Escherichia coli ATCC 8739</i> (62.0 μg/ml), <i>Enterococcus faecalis ATCC 29212</i> (62.0 μg/ml), <i>Bacillus subtilis ATCC 6633</i> (62.0 μg/ml), <i>Candida albicans ATCC 26790</i> (62 μg/ml)	
CoFe ₂ O ₄	Hibiscus rosa-sinensis	Antimicrobial	Zone of inhibition: <i>Staphylococcus aureus</i> (9 mm), <i>Escherichia coli</i> (12 mm)	6

Table S2. Microbial performance of green $CoFe_2O_4$ nanoparticles.

$CoFe_2O_4$	Carissa	Antimicrobial	Zone of inhibition: Bacillus subtilis (24 mm),	19
Ag	carandas		Staphylococcus aureus (17 mm),	
			Pseudomonas aeruginosa (20 mm),	
			Escherichia coli (19 mm)	

CoFe ₂ O ₄ @	Piper	Antimicrobial	Zone of inhibition: Pseudomonas aeruginosa	23
Ag	chaudocanu		(18 mm), Escherichia coli (20 mm),	
	т		Staphylococcus aureus (19 mm)	
CoFe ₂ O ₄ @	Moringa	Antimicrobial	Zone of inhibition: Staphylococcus aureus	24
Ag	oleifera		(15 mm), Pseudomonas aeruginosa (17 mm),	
			Bacillus subtilis (22 mm), Escherichia coli	
			(22 mm)	
			Minimum inhibitory concentration:	
			Staphylococcus aureus (25.5 µg/mL),	
			Pseudomonas aeruginosa (28.1 µg/mL),	
			Bacillus subtilis (16.2 µg/mL), Escherichia	
			<i>coli</i> (20.5 µg/mL)	
CoFe ₂ O ₄	Eucalyptus	Antimicrobial	Zone of inhibition: Staphylococcus aureus	25
	globulu		(8.5 mm), Pseudomonas aeruginosa (8 mm),	
			Escherichia coli (7.5 mm), Candida albicans	

(8.5 mm)

Graphite@C	Rutin extract	Antimicrobial	Minimum inhibitory concentration:	26
oFe ₂ O ₄			Staphylococcus aureus (6,800 µg/mL),	
			<i>Escherichia coli</i> : 6,900 µg/mL)	
			Minimum bactericidal concentration:	
			Staphylococcus aureus (9,400 µg/mL),	
			Escherichia coli (9,100 µg/mL)	
CoFe ₂ O ₄	Aloe vera	Antimicrobial	Minimum inhibitory concentration:	27
			multidrug-resistant Pseudomonas aeruginosa	
			(250 µg/mL), Pseudomonas aeruginosa (500	
			μg/mL), <i>Escherichia coli</i> (500 μg/mL),	
			Staphylococcus aureus (500 µg/mL),	
			Methicillin-resistant Staphylococcus aureus	
			(500 µg/mL), Candida albicans (750	
			μg/mL), <i>Candida parapsilosis</i> (1,000 μg/mL)	
CoFe ₂ O ₄	Sesamum	Antimicrobial	Minimum inhibitory concentration:	28
	indicum		Enterococcus faecalis (250 µg/mL),	
			Staphylococcus aureus (1,000 µg/mL),	
			Escherichia coli (1,000 µg/mL),	
			Pseudomonas aeruginosa (125 µg/mL),	
			Candida albicans (> 1,000 µg/mL)	

CoFe ₂ O ₄	Sesamum	Anticancer	Cell viability of HCT-8: 14% (1000 µg/mL)	28
	indicum			
CoFe ₂ O ₄	Torajabin	Anticancer	Half-maximal inhibitory concentration:	15
			CaCo2 (1095 µg/mL), MCF-7 (1811 µg/mL),	
			mouse embryo fibroblast cell (2502 μ g/mL)	
CoFe ₂ O ₄ @	Piper	Anticancer	Half-maximal inhibitory concentration:	23
Ag	chaudocanu		HepG2 (68.9 µg/mL)	
	т			
CoFe ₂ O ₄ @	Carissa	Anticancer	Half-maximal inhibitory concentration:	19
Ag	carandas		MCF-7 (60 µg/mL)	
CoFe ₂ O ₄ @	Moringa	Antioxidant	Inhibition of 69% DPPH (0.1%) by 1,000	24
Ag	oleifera		µg/mL	

*Note: DPPH, 2,2-diphenyl-1-picrylhydrazyl.

Materials	Reducing agent	Pollutant	Pollutant concentration (mg/L)	Catalyst dosage (g/L)	Treatment method	Treatment efficiency	Ref.
CoFe ₂ O ₄	<i>Erythrina</i> <i>variegata</i> extract	Crystal violet	25	0.15	Photodegra dation	85.18%	20
CoFe ₂ O ₄	<i>Erythrina</i> <i>variegata</i> extract	Congo red	25	0.15	Photodegra dation	79.58%	20
CoFe ₂ O ₄	<i>Carissa</i> <i>carandas</i> extract	Rhodamine B	30	0.01	Photodegra dation	77.83% in 35 min	19
CoFe ₂ O ₄ @ Ag	<i>Carissa</i> <i>carandas</i> extract	Rhodamine B	30	0.01	Photodegra dation	97.42% in 35 min	19
CoFe ₂ O ₄	<i>Torajabin</i> extract	Acid orange 7	20	1.0	Photodegra dation	92.1% in 120 min	15
CoFe ₂ O ₄ @ ZnO@CeO 2	Crataegus microphylla extract	Humic acid	250	3.0	Photodegra dation	97.2% in 100 min	29
CoFe ₂ O ₄	<i>Hibiscus</i> <i>rosa-sinensis</i> extract	Methylene blue	10	-	Photodegra dation	84.0% in 120 min	6

Table S3. Performance of green $CoFe_2O_4$ nanoparticles for removal of pollutants.

CoFe ₂ O ₄ /Ti O ₂	<i>Moringa</i> <i>oleifera</i> extract	Methylene blue	7	1.0	Photodegra dation	98.7% in 20 min	30
CoFe ₂ O ₄ /Ti O ₂ /rGO	<i>Pedalium</i> <i>murex</i> extract	Tetracyclin e	20	0.3	Sonophoto degradation	92.0% in 90 min	22
CoFe ₂ O ₄ /Ti O ₂ /rGO	Pedalium murex extract	Ciprofloxa cin	10	0.3	Sonophoto degradation	84.0% in 90 min	22
CoFe ₂ O ₄ @ Nb ₂ O ₅	<i>Tangerine</i> <i>Peel</i> extract	Paracetamo 1	20	0.5	Photodegra dation	97.5%	31
CoFe ₂ O ₄	<i>Ginkgo biloba</i> extract	Congo red	50	1.0	Adsorption	45.7 mg/g	32
Ag– CoFe ₂ O ₄	Taxus wallichiana leaf extract	Pb ²⁺	100	-	Adsorption	33.0 mg/g	33
CoFe ₂ O ₄	<i>Ginger</i> extract	Phenol red	-	1.0	Photodegra dation	91.0%	14
CoFe ₂ O ₄	Cardamom extract	Phenol red	-	2.0	Photodegra dation	74.6%	14

References

- K. Kombaiah, J. J. Vijaya, L. J. Kennedy, M. Bououdina, R. J. Ramalingam and H. A. Al-Lohedan, *Mater. Chem. Phys.*, 2018, 204, 410–419.
- 2 S. S. Banifatemi, F. Davar, B. Aghabarari, J. A. Segura, F. J. Alonso and S. M. Ghoreishi, *Ceram. Int.*, 2021, **47**, 19198–19204.
- D. Gingasu, I. Mindru, L. Patron, J. M. Calderon-Moreno, O. C. Mocioiu, S. Preda, N.
 Stanica, S. Nita, N. Dobre, M. Popa, G. Gradisteanu and M. C. Chifiriuc, *J. Nanomater.*, 2016, 2016, 1–12.
- 4 A. Kiani, F. Davar and M. Bazarganipour, *Ceram. Int.*, 2022, **48**, 34895–34906.
- 5 K. Kombaiah, J. J. Vijaya, L. J. Kennedy, M. Bououdina, R. J. Ramalingam and H. A. Al-Lohedan, *Ceram. Int.*, 2017, **43**, 7682–7689.
- L. Velayutham, C. Parvathiraja, D. C. Anitha, K. Mahalakshmi, M. Jenila, F. A.
 Alasmary, A. S. Almalki, A. Iqbal and W.-C. Lai, *Nanomaterials*, 2022, 12, 3668.
- 7 W. Al-Gethami, D. Alhashmialameer, N. Al-Qasmi, S. H. Ismail and A. H. Sadek, *Nanomaterials*, 2022, **12**, 3620.
- 8 K. L. Routray, S. Saha and D. Behera, *Mater. Chem. Phys.*, 2019, 224, 29–35.
- 9 K. Kombaiah, J. J. Vijaya, L. J. Kennedy, M. Bououdina and B. Al Najar, J. Alloys Compd., 2018, 735, 1536–1545.
- 10 P. Kushwaha and P. Chauhan, *Inorg. Nano-Metal Chem.*, 2021, 1–8.
- D. Gingasu, I. Mindru, D. C. Culita, J. M. Calderon-Moreno, C. Bartha, S. Greculeasa, N. Iacob, S. Preda and O. Oprea, *Appl. Phys. A*, 2021, **127**, 892.
- 12 G. C. Hermosa, C.-S. Liao, H.-S. Wu, S.-F. Wang, T.-Y. Liu, K.-S. Jeng, S.-S. Lin, C.-F. Chang and A.-C. A. Sun, *IEEE Trans. Magn.*, 2022, 58, 1–7.

- D. Ayu Larasati, D. Lismawenning Puspitarum, M. Yoga Darmawan, N. Imani Istiqomah,
 J. Partini, H. Aliah and E. Suharyadi, *Results Mater.*, 2023, 19, 100431.
- D. N. Chandrani, S. Ghosh and A. R. Tanna, J. Inorg. Organomet. Polym. Mater., 2024, In press.
- 15 A. Miri, M. Sarani, A. Najafidoust, M. Mehrabani, F. A. Zadeh and R. S. Varma, *Mater. Res. Bull.*, 2022, 149, 111706.
- A. Cheraghi, F. Davar, M. Homayoonfal and A. Hojjati-Najafabadi, *Ceram. Int.*, 2021, 47, 20210–20219.
- 17 K. L. Routray, S. Saha and D. Behera, J. Electron. Mater., 2020, 49, 7244–7258.
- 18 A. Manikandan, R. Sridhar, S. Arul Antony and S. Ramakrishna, *J. Mol. Struct.*, 2014, 1076, 188–200.
- S. Punyasamudram, R. P. Puthalapattu, A. Bathinapatla, R. Mulpuri, S. Kanchi and P. V. N. Kumar, *Chemosphere*, 2024, **349**, 140892.
- R. Kavitha, K. Krishna Veni, S. Sagadevan and L. C. Nehru, *Ceram. Int.*, 2024, 50, 4861–4874.
- 21 O. Baytar, A. Ekinci, Ö. Şahin and A. Akdag, *ChemistrySelect*, 2024, 9, e202304491.
- 22 R. E. Nimshi, J. J. Vijaya, L. J. Kennedy, P. S. Selvamani, M. Bououdina and P. J. Sophia, *Ceram. Int.*, 2023, 49, 13762–13773.
- T. T. Thao, K. T. Tam, N. P. Hung, L. H. Nguyen and N. Van Khien, *J. Mater. Res.*, 2024, 39, 1499–1512.
- Q. Y. Tamboli, S. M. Patange, Y. K. Mohanta, A. D. Patil, R. Ali, I. Bushnak and K. Zakde, *ACS Omega*, 2024, 9, 3835–3845.
- D. Gingasu, D. C. Culita, J. M. Calderon Moreno, G. Marinescu, C. Bartha, O. Oprea, S.
 Preda, M. C. Chifiriuc and M. Popa, *Coatings*, 2023, 13, 1250.

- F. Dehghani, S. Shahmoradi, M. Naghizadeh, T. Firuzyar, A. Vaez, S. R. Kasaee, A. M.
 Amani and S. Mosleh-Shirazi, *Appl. Phys. A*, 2022, **128**, 250.
- 27 M. A. Ansari, R. Govindasamy, M. Y. Begum, M. Ghazwani, A. Alqahtani, M. N. Alomary, Y. F. Jamous, S. A. Alyahya, S. Asiri, F. A. Khan, M. A. Almessiere and A. Baykal, *Nanotechnol. Rev.*, 2023, **12**, 20230575.
- 28 D. Gingasu, I. Mindru, O. C. Mocioiu, S. Preda, N. Stanica, L. Patron, A. Ianculescu, O. Oprea, S. Nita, I. Paraschiv, M. Popa, C. Saviuc, C. Bleotu and M. C. Chifiriuc, *Mater. Chem. Phys.*, 2016, **182**, 219–230.
- A. Naghizadeh, S. Mohammadi-Aghdam and S. Mortazavi-Derazkola, *Bioorg. Chem.*,
 2020, 103, 104194.
- 30 D. L. Puspitarum, N. I. Istiqomah, R. M. Tumbelaka, A. Kusumaatmaja, D. Oshima, T. Kato and E. Suharyadi, *Adv. Nat. Sci. Nanosci. Nanotechnol.*, 2022, **13**, 045003.
- J. R. P. Oliveira, L. S. Ribas, J. S. Napoli, E. Abreu, J. L. Diaz de Tuesta, H. T. Gomes, A.
 M. Tusset and G. G. Lenzi, *Magnetochemistry*, 2023, 9, 200.
- 32 M. Liaskovska, T. Tatarchuk, V. Kotsyubynsky and H. Ersteniuk, *Phys. Chem. Solid State*, 2021, **22**, 792–803.
- H. Tasqeen, M. Waseem, S. Hussain, Zil-E-Humma, A. Baig and A. Majeed, *Chem. Pap.*, 2024, 78, 4517–4528.