Supporting Information for

Harnessing Sustainable Nanoclusters for Sensitive Optical Detection of Tetracyclines and the Underlying Mechanism

Miguel Justo-Tirado¹, Irene Pérez-Herráez¹, Jorge Escorihuela², Raúl Arenal,^{3,4,5} Elena Zaballos-García²*, and Julia Pérez-Prieto¹*

¹Instituto de Ciencia Molecular (ICMol), Universitat de València, Catedrático José Beltrán 2, Paterna, Valencia, Spain

²Departamento de Química Orgánica, Universitat de València, Av. Vicent Andres Estelles s/n, Burjassot, Spain ³Instituto de Nanociencia y Materiales de Aragon (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain

⁴Laboratorio de microscopias avanzadas (LMA), U. Zaragoza, C/ Mariano Esquillor s/n, 50018 Zaragoza, Spain ⁵ARAID Foundation, 50018 Zaragoza, Spain

Evolution of the synthesis of AuNC@NAC
PL spectra of AuNC@NAC at different excitation wavelengths2
TEM and HRTEM images, EDAX and mapping of AuNC@NAC
Comparison between the FT-IR spectra of NAC and AuNC@NAC5
TGA of AuNC@NAC and NAC6
ICP-MS analysis of AuNC@NAC and estimation of NAC molecules per AuNC@NAC7
MALDI-MS spectra of AuNC@NAC8
C1s XPS analysis of AuNC@NAC8
Comparison of the existing method for TC detection9
Detection of TC in water samples10
Time-resolved photoluminescence studies of AuNC@NAC at different [TC]10
FT-IR spectrum of AuNC@NAC upon addition of TC11
Different coordination modes of NAC ligand with AuNC@NAC11
Estimation of energy levels of Au@NAC and TC12
References

Evolution of the synthesis of AuNC@NAC

Figure S1. (a) Absorbance and (b) PL spectra of the evolution of the AuNC@NAC synthesis at the indicated times.

PL spectra of AuNC@NAC at different excitation wavelengths

Figure S2. PL spectra of AuNC@NAC varying the excitation wavelength from 300 to 420 nm.

TEM and HRTEM images, EDAX and mapping of AuNC@NAC

Figure S3. (a) TEM image of AuNC@NAC. (b) Size distribution of AuNCs. (c) HRTEM image of the AuNC@NAC. (d) Selected areas of the image including the i-FFT region of the (111) planes, attributed to the distinctive spacing between planes in gold (Au).

Figure S4. (a) Characteristic distance between planes of Au. (b) EDAX spectrum of AuNC@NAC. (c) HRTEM image of AuNC@NAC and the mapping of the signals of the same region for (d) AuL and (e) SK. (f) Overlapped images c-e.

Comparison between the FT-IR spectra of NAC and AuNC@NAC

The FT-IR spectra of free NAC and AuNC@NAC are shown in Figure S5. The band centered at 3370 cm⁻¹ in the spectra of free NAC may arise from stretching vibration of the –OH and -NH groups and H₂O bound on the AuNCs surface. In the curve of free NAC, the characteristic band at 2544 cm⁻¹ is attributed to S-H group, the bands at 1713 and 1276 cm⁻¹ are corresponding to carboxyl group, the bands at 1190-1170 cm⁻¹ are ascribed to C-N group and the band centered at 1525 cm⁻¹ is due to N-H bending vibrations of -NH- group. The disappearance of the characteristic band of S-H group in the curve of AuNC@NAC indicates the successful bonding between the sulfur atom and the surface of the nanocluster. The shift of the –OH, C=O and N-H peaks provides the evidence of electrostatic interaction between carboxyl and secondary amine group of NAC and the Au atoms of the surface of AuNCs.^{1,2} The broad signal at 3572 cm⁻¹ may be to the -OH stretching vibration. This peak tends to be very strong and very broad and is red-shifted to 3524 cm⁻¹.

Figure S5. FT-IR spectra of free NAC (black line) and the as-synthesized AuNC@NAC (orange line). Inset: chemical structure of NAC.

TGA of AuNC@NAC and NAC

Figure S6. First derivatives and TGA of the AuNC@NAC (orange line) and the free NAC (green dashed line).

ICP-MS analysis of AuNC@NAC and estimation of NAC molecules per AuNC@NAC

 Table S1. ICP-MS analysis of AuNC@NAC.

	Au (mg/mL)	S (mg/mL)
AuNC@NAC	499 ± 2	92.1 ± 1.3

- Particle diameter (D)

$$D = 2.2 \, nm$$

- Particle volume (V)

$$V = \frac{4}{3}\pi (\frac{D}{2})^3 = \frac{4}{3}\pi (\frac{2.2}{2})^3 = 5.575 \ nm^3$$

- Gold FCC lattice constant (L)

$$L = 0.408 \, nm$$

- Unit cell volume (U)

$$U = L^3 = 0.068 nm^3$$

- Number of cell unit (B)

$$B = \frac{V}{U} = \frac{5.575 \ nm^3}{0.068 \ nm^3} = 81.985$$

- Gold atoms per particle (P)

$$P = 4 \cdot B = 4 \cdot 327.94 = 327.94$$

- [Ligand] in sample (H)

$$92.1 \frac{mg}{L} \cdot 1 \, ml \cdot \frac{1 \, L}{1000 \, ml} = 0.0921 \, mg \, S$$
$$n = \frac{m}{Mr} = \frac{\frac{0.0921}{1000} g}{32.065 \frac{g}{mol}} = 2.87 \times 10^{-6} \, mol \, S$$
$$H = 2.87 \times 10^{-6} \, mol \, S \cdot \frac{1 \, mol \, NAC}{1 \, mol \, S} = 2.87 \times 10^{-6} \, mol \, NAC$$

- [Au] in sample (A)

$$499\frac{mg}{L} \cdot 1 \, ml \cdot \frac{1 \, L}{1000 \, ml} = 0.499 \, mg \, Au$$
$$n = \frac{m}{Mr} = \frac{\frac{0.499}{1000} g}{196.97 \frac{g}{mol}} = 2.53 \times 10^{-6} \, mol \, Au$$
$$A = 2.53 \times 10^{-6} \, mol \, Au$$

Figure S7. MALDI-MS spectra of AuNC@NAC.

MALDI-MS spectra of AuNC@NAC

C1s XPS analysis of AuNC@NAC

Figure S8. High resolution XPS C1s spectrum showed peaks at 285 eV, 286.5 eV 288 and 289 eV derived from C–C, C-N, C-S and C=O bonds respectively, in AuNC@NAC.

Comparison of the existing method for TC detection

Table S2. Comparison of the proposed method with other methods for the detection of TC based on fluorescence nanomaterials.

	AuNC@NAC	QD/CdTe ³	ZnO nanorods ⁴	DA- CuNCs⁵	N-doped carbon dots ⁶	MoS ₂ nanoplates ⁷	Carbon dots ⁸
Synthesis conditions	25 ⁰C, >24 h	50 °C, >10 h	100 °C, 10 h 25 ∘C, >24 h	55 °C, 12 h	180 °C, 4 h	200 °C, 24 h	25 ⁰C, 3 h
Φ _{PL} (%)	1	-	-	-	10	8	-
Incubation time	-	20 min	5 min	10 min	10 min	5 min	-
Linear range (µM)	0.1–140	70-2200	2-120	3.6-1000	2–200	0.1–50	10-400
LOD (µM)	2	2.10	1.27	0.92	0.6	0.032	6.0

Table S3. Comparison of the proposed method with other methods for the detection of TC based on other nanocluster nanomaterials.

Ref.	NC core	Ligand	Linear range (µM)	LOD (µM)	LOD (ppm)
9	AgNCs	NAC	1.12-230	0.47	0.21
10	AuNCs	Glutathione	50-10000	5.31	2.36
11	AuNCs	Histidine (Eu ³⁺)	0.01-60	0.004	0.002
12	AuNCs	Ovalbumin	0.03-500	0.09	0.04
13	CuNCs	NAC	0-20	5.6	2.5
14	CuNCs	Dopamine	3.6-1000	0.92	0.41
15	CuNCs	Histidine	0.1-110	0.047	0.021
This work	AuNCs	NAC	0.1-140	1.8	0.8

Detection of TC in water samples

Sample	Added (µM)	Found (µM)	Recovery (%)
	0	-	-
Tap water	30	27.0	90
	50	49.7	99.4
	60	64.8	108

Table S4. Results of the recovery studies of TC in water using the proposed sensing method.

Time-resolved photoluminescence studies of AuNC@NAC at different [TC]

Table S5. Fluorescence lifetime fitting parameters for AuNC@NAC under different [TC]. The results were obtained with tri-exponential model.

 $\sum \alpha_i \exp(-t / \tau_i)$ (i=1...3).

[TC] (µM)	χ ²	τ _{av} (ns)	τ ₁ (ns)	τ ₂ (ns)	τ₃ (ns)
0	3.380	325.91	15.37 (α ₁ =7.17%)	82.31 (α ₂ =27.96%)	466.92 (α ₃ =64.87%)
1	3.374	318.76	15.24 (α ₁ =8.14%)	82.83 (α ₂ =24.57%)	443.47 (α ₃ =67.29%)
5	3.376	303.95	9 (α ₁ =3.06%)	48.32 (α ₂ =21.37%)	389 (α ₃ =75.56%)
15	3.507	283.44	5.54 (α ₁ =2.94%)	44.96 (α ₂ =22.28%)	365.64 (α ₃ =74.78%)
30	3.77	268.06	6.81 (α ₁ =4.73%)	52.11 (α₂=26.83%)	371.3 (α ₃ =68.43%)
50	3.438	244.85	5.04 (α ₁ =5.74%)	40.74 (α ₂ =19.81%)	317.6 (α ₃ =74.46%)
100	4.486	216.12	2.58 (α ₁ =2.52 %)	26.05 (α ₂ =17.62%)	264.8 (α ₃ =79.86%)
200	4.225	181.37	3.67 (α ₁ =11.49%)	29.91 (α ₂ =16.89%)	245.63 (α ₃ =71.61%)
500	5.237	101.77	2.92 (α ₁ =15.59%)	22.7 (α ₂ =23.09%)	156.67 (α ₃ =61.32%)

Figure S9. FT-IR spectra of (a) TC (black line), AuNC@NAC+TC (red line) and the as-synthesized AuNC@NAC (green line).

Different coordination modes of NAC ligand with AuNC@NAC

Figure S10. Optimized structures of a model AuNC@NAC composed of a core of 13 Au atoms at the B3LYP-D3/def2TZVP (SDD for Au) level of theory.

Estimation of energy levels of Au@NAC and TC

Figure S11. Cyclic Voltammetric (CV) curves of Au@NAC (top) and TC (down) to Ag/Ag⁺ electrodes.

For estimating HOMO/VB and LUMO/CB energies from CV measurements in solution, the following equations are used from literature:

$$E_{HOMO/VB} = -[V_{ox} - V_{(Fc/Fc^+)} + 4.8] eV$$
 (S1)

$$E_{LUMO/CB} = -[V_{red} - V_{(Fc/Fc^+)} + 4.8] eV$$
 (S2)

Where V_{ox} and V_{red} are the irreversible oxidation and reduction peaks determined in the peak in the cyclic voltamperograms (CV) measurements, V(Fc/Fc⁺) is the oxidation potential at semi-wave of Fc/Fc⁺ couple external reference in water^{16,17} and 4.8 is the energy of Fc/Fc⁺ to against vacuum.

In the case of AuNC@NAC, the reduction is irreversible and is determined from the peak value of -0.53 V. Therefore, the calculated conducting band energy (VB) is -3.87 eV vs vacuum. Assuming the oxidation potential of the material is not easily found due to the huge band-gap the AuNC have, we could estimate its value by using the following approximation:^{18–20}

$$E_{CB} = E_{VB} + \Delta E^{Opt} \rightarrow E_{VB} = E_{CB} - \Delta E^{Opt}$$
(S3)

The optical gap (ΔE^{Opt}) could be estimated only roughly by observing the reported experimental UV-Vis spectrum^{21–25} and resulted to be on the interval of 3.5 eV for the AuNC@NAC and 3.1 eV for the TC. The photon energy, *E*, is inversely proportional to the wavelength, as described by the equation:

$$E = \frac{hc}{\lambda}$$
 (S4)

where h is Planck's constant ($6.6261 \cdot 10^{-34} \text{ J} \cdot \text{s}$) and c is the speed of light ($2.9979 \cdot 10^8 \text{ m/s}$).

Since 1 eV is equivalent to $1.6022 \cdot 10^{-19}$ J, the ΔE^{Opt} values of 3.5 eV and 3.1 eV were calculated for AuNC@NAC and TC, respectively.

The calculated BV energy is around -7.37 eV. These values for VB and CB are consistent with previously reported values.^{26,27}

Whereas, in the case of TC something similar happens. It is also observed the irreversible reduction potential at -1.18 V. Thus, with the approximation used before, the LUMO and HOMO energies are -3.22 eV and -6.32 eV. The estimated energy levels are summarized in *Table S4.*

Table S6. Energy levels.

	V _{ox} (V)	Е _{номо} /VB (eV)	V _{red} (V)	E _{LUMO} /CB (eV)	∆E ^{opt} (eV)
AuNC@NAC	-	-7.37*	-0.53	-3.87	3.5
тс	-	-6.32*	-1.18	-3.22	3.1

* Calculated from equation S3.

Figure S12. Absorption spectra and the spectrum on the energy scale (inset) for the (a) AuNC@NAC and (b) TC.

References

- 1 Y. Zhang, M. Lv, P. Gao, G. Zhang, L. Shi, M. Yuan and S. Shuang, Sensors Actuators, B Chem., 2021, **326**, 129009.
- 2 W. Du, L. Liao, L. Yang, A. Qin and A. Liang, *Sci. Rep.*, 2017, 7, 1–12.
- 3 M.-R. Chao, C.-W. Hu and J.-L. Chen, *Anal. Chim. Acta*, 2016, **925**, 61–69.
- 4 Z. Zhou, K. Lu, X. Wei, T. Hao, Y. Xu, X. Lv and Y. Zhang, *RSC Adv.*, 2016, **6**, 71061–71069.
- 5 L. Wang, H. Miao, D. Zhong and X. Yang, *Anal. Methods*, 2016, **8**, 40–44.
- 6 B. Al-Hashimi, K. M. Omer and H. S. Rahman, *Arab. J. Chem.*, 2020, **13**, 5151–5159.
- P. Jia, T. Bu, X. Sun, Y. Liu, J. Liu, Q. Wang, Y. Shui, S. Guo and L. Wang, *Food Chem.*, 2019, 297, 124969.
- 8 Y. Yan, J. H. Liu, R. S. Li, Y. F. Li, C. Z. Huang and S. J. Zhen, *Anal. Chim. Acta*, 2019, **1063**, 144–151.
- 9 Y. Zhang, M. Lv, P. Gao, G. Zhang, L. Shi, M. Yuan and S. Shuang, *Sensors Actuators B Chem.*, 2021, **326**, 129009.
- 10 D. Liu, X. Pan, W. Mu, C. Li and X. Han, *Anal. Sci.*, 2019, **35**, 367–370.
- 11 Y. Li, Q. Du, X. Zhang and Y. Huang, *Talanta*, 2020, **206**, 120202.
- 12 F. Zhang, M. Liu, R. Liu, J. Li, Y. Sang, Y. Tang, X. Wang and S. Wang, *Biosens. Bioelectron.*, 2021, **171**, 112701.
- 13 Z. Wang, C. C. Zhang, J. Gao and Q. Wang, J. Lumin., 2017, 190, 115–122.
- 14 L. Wang, H. Miao, D. Zhong and X. Yang, Anal. Methods, 2016, 8, 40–44.
- 15 Z. Cai, R. Zhu, S. Chen, L. Wu, K. Qi and C. Zhang, *ChemistrySelect*, 2020, 5, 3682–3687.
- 16 R. R. Gagne, C. A. Koval and G. C. Lisensky, *Inorg. Chem.*, 1980, **19**, 2854–2855.
- 17 A. M. Bond, E. A. McLennan, R. S. Stojanovic and F. G. Thomas, *Anal. Chem.*, 1987, **59**, 2853–2860.
- 18 S. Kumari, J. G. Sánchez, M. Imran, E. Aktas, D. A. González, L. Manna, E. Martínez-Ferrero and E. Palomares, *J. Mater. Chem. C*, 2023, **11**, 3788–3795.
- 19 J. T. Mulder, I. du Fossé, M. Alimoradi Jazi, L. Manna and A. J. Houtepen, *ACS Energy Lett.*, 2021, **6**, 2519–2525.
- 20 J. Tauc, R. Grigorovici and A. Vancu, *Phys. status solidi*, 1966, **15**, 627–637.
- 21 F. Muniz-Miranda, M. C. Menziani and A. Pedone, J. Phys. Chem. C, 2014, 118, 7532–7544.
- 22 A. Das, T. Li, K. Nobusada, Q. Zeng, N. L. Rosi and R. Jin, J. Am. Chem. Soc., 2012, 134, 20286–20289.
- F. Ambroz, J. L. Donnelly, J. D. Wilden, T. J. Macdonald and I. P. Parkin, *Nanomaterials*, 2019, 9.
- 24 R. Jin, Nanoscale, 2015, 7, 1549–1565.
- 25 4–7.
- 26 S. Maity, D. Bain, K. Bhattacharyya, S. Das, R. Bera, B. Jana, B. Paramanik, A. Datta and A. Patra, *J. Phys. Chem. C*, 2018, **122**, 13354–13362.
- K. Marjit, G. Ghosh, S. Ghosh, D. Ghosh, A. Medda and A. Patra, *ACS Phys. Chem. Au*, 2023, 3, 348–357.