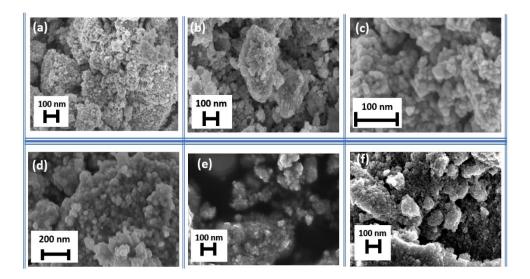
Electronic Supplementary Information for

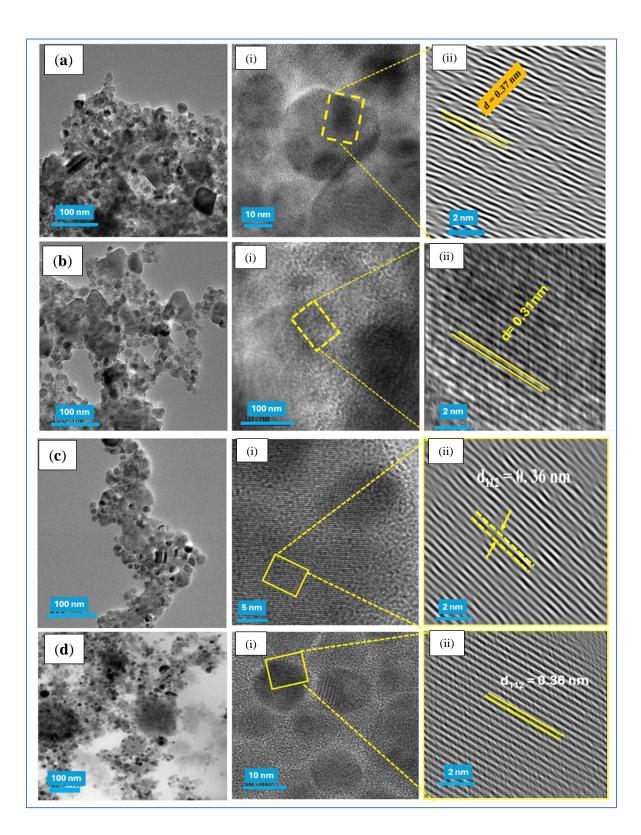
Optimized hot injection and HCl purification for high quality Cu₂ZnSnS₄ Nanoparticles

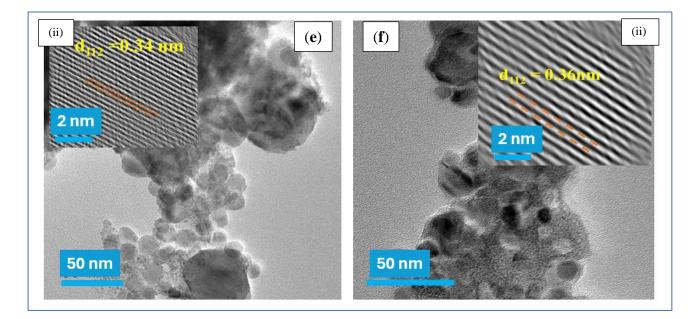
Amin Hasan Husien^{*a,b}, Giorgio Tseberlidis^{*a}, Vanira Trifiletti^a, Elisa Fabbretti^a, Silvia Mostoni^a, James

McGettrick^c, Trystan Watson^c, Riccardo Po^b, and Simona Binetti^a


^a Department of Materials Science and Solar Energy Research Center (MIB-SOLAR), University of Milano-Bicocca, Via Cozzi 55, I-20125, Milan, Italy;

^b New Energies, Renewable Energies and Materials Science Research Center Istituto Donegani, Eni S.p.A., via Fauser 4, I-28100, Novara, Italy.


^c SPECIFIC IKC, Faculty of Science and Engineering, Swansea University, Fabian way, Swansea, SA1 8EN, United Kingdom.


*Corresponding authors: Giorgio Tseberlidis: giorgio.tseberlidis@unimib.it;

Amin Hasan Husien: aminhasan.husien@unimib.it

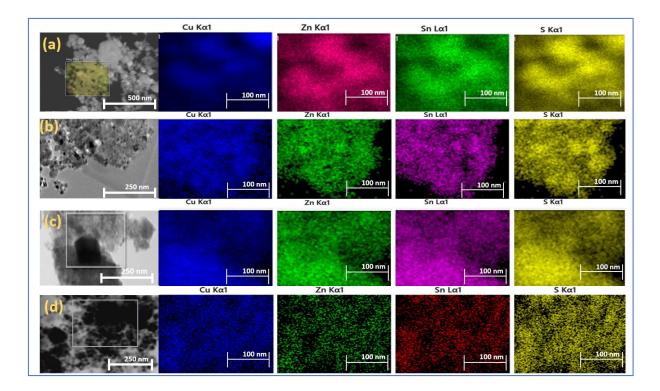
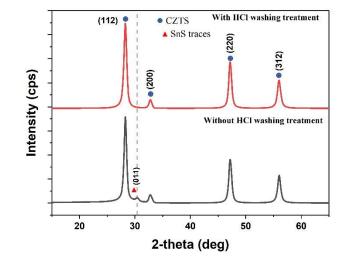
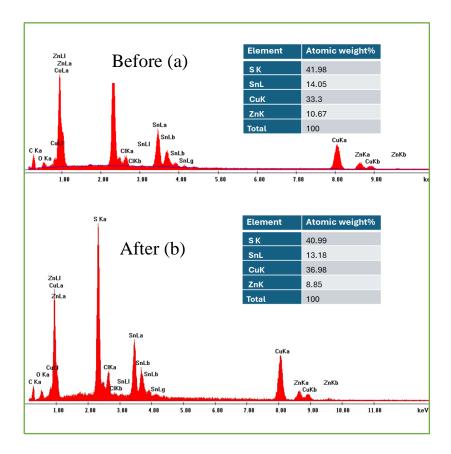
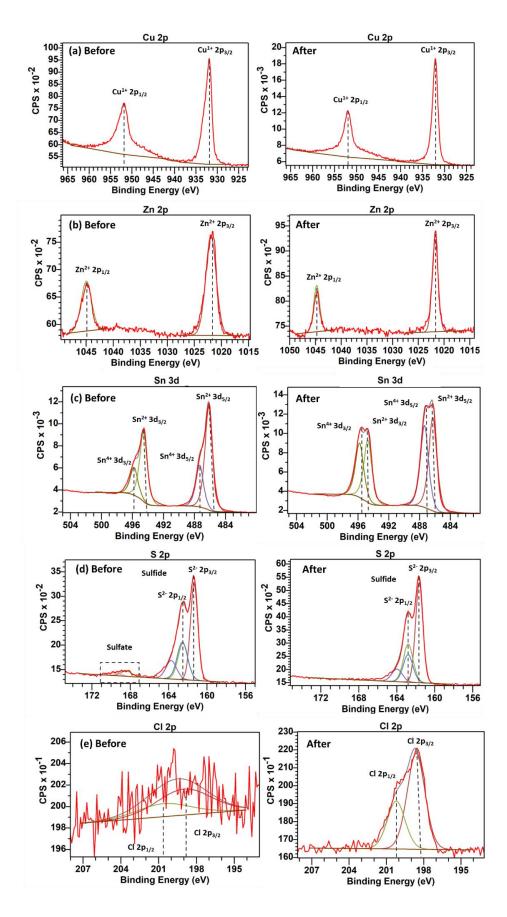


Fig. S1: Scanning electron microscopy images of CZTS NPs obtained with different injection temperatures at scales of 100 nm and 200 nm; (a) 210 °C, (b) 225 °C, (c) 235 °C, (d) 240 °C, (e) 260 ° and (f) 270 °C.


Fig. S2: TEM images of so-obtained CZTS NPs synthesised under different injection temperatures: (a) 210 °C, (b) 225 °C, (c) 235 °C, (d) 240 °C, (e) 260 °C and (f) 270 °C, respectively; (i) high-resolution (HR)TEM image of CZTS NPs; (ii) lattice fringes in a single nanoparticle.


Fig. S3: STEM-EDS elemental map of CZTS NPs synthesised under different injection temperatures: (a) 210 °C, (b) 235 °C, (c) 240 °C and (d) 270 °C. The images were obtained on JEOL JEM-2100PLUS with an emission voltage of 200 kV.

Sample	Angle (2θ)	FWHM (degree)
Un treated-HCl	28.2	0.59
Treated-HCl	28.3	0.54


Table S1: Angle, and FWHM of CZTS NPs synthesized at 240 °C for 30 min

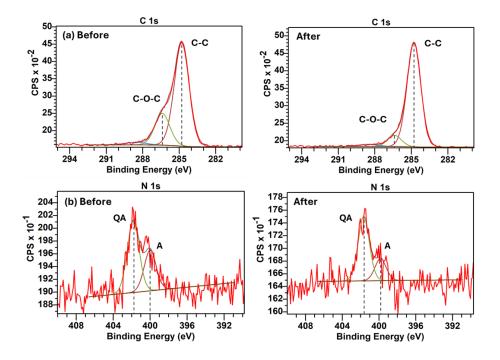

Fig. S4: XRD patterns of CZTS NPs synthesized at 240 °C; before washing with HCl solution referred as "untreated with HCl" (black line spectra) and after washing with HCl referred as "treated with HCl" (red line spectrum).

Fig. S5: EDS composition of CZTS NPs synthesized at 240 °C; (a) before and (b) after HCl treatment; the inset (tables) indicate their corresponding elemental composition before and after HCl treatment.

Fig. S6: High resolution XPS of (a) Cu 2p, (b) Zn 2p, (c) Sn 3d, (d) S 2p and (e) Cl 2p core-levels in the CZTS NPs synthesized at 240 °C, before and after the HCl treatment.

Fig S7: High-resolution XPS of (a) C *1s* (C-C and C-O-C chemical states), and (b) N *1s* (amine A and quaternary amine QA) contaminations related to residual oleylamine in the dried CZTS NPs. The spectra are compared before and after the HCl treatment.

Element	Before	Peak Separation before	After	Peak Separation after
Cu ¹⁺	2p _{3/2} 932.0 eV 2p _{1/2} 951.8 eV	19.8 eV	2p _{3/2} 932.1 eV 2p _{1/2} 952.0 eV	19.9 eV
Zn ²⁺	2p _{3/2} 1021.8 eV 2p _{1/2} 1045.0 eV	23.2 eV	2p _{3/2} 1021.6 eV 2p _{1/2} 1044.8 eV	23.2 eV
Sn ²⁺	3d _{5/2} 486.2 eV 3d _{3/2} 494.5 eV	8.3 eV	3d _{5/2} 486.3 eV 3d _{3/2} 494.7 eV	8.4 eV
Sn ⁴⁺	3d _{5/2} 487.4 eV 3d _{3/2} 495.8 eV	8.4 eV	3d _{5/2} 487.3 eV 3d _{3/2} 495.7 eV	8.4 eV
\$ ²⁻	2p _{3/2} 161.3 eV 2p _{1/2} 162.4 eV	1.1 eV	2p _{3/2} 161.7 eV 2p _{1/2} 162.8 eV	1.1 eV

Table S2: Peaks positions for the XPS spectra of Cu 2p, Zn 2p, Sn 3d, S 2p and the corresponding peakseparation binding energies, before and after the HCl treatment.

Table S3: Atomic percentage S in sulphate and in sulphide phases over the total sulphur amount, and C andN total composition, before and after the HCl treatment.

HCl treatment	Sulphate / % of total sulphur	Sulphide /% of total sulphur	Carbon / % of total composition	Nitrogen / % of total composition
Before washing	8.7	91.3	48.72	1.66
After washing	1.7	98.3	37.80	0.33

Table S4: Work Function, Valence band and Ionizing Potential by UPS for CZTS NPs powder before and afterHCL washing.

HCl treatment	WF UPS	VB UPS	IP (eV)
Before	4.4 ± 0.1	0.22 ± 0.04	4.7 ± 0.1
After	4.2 ± 0.2	0.39 ± 0.13	4.5 ± 0.1

Table S5: equations for the reactions involved in the CZTS nanoparticles formation

Reactions	Temperature range
$2Cu(II) + Sn(II) \rightarrow 2Cu(I) + Sn(IV)$	From 100 to 180 °C
$2Cu(I) + Zn(II) + Sn(IV) + 4S \rightarrow Cu_2S + ZnS + SnS_2$	Above 230 °C (after S injection)
$Cu_2S + ZnS + SnS_2 \rightarrow Cu_2ZnSnS_4$	Between 230 and 280 °C

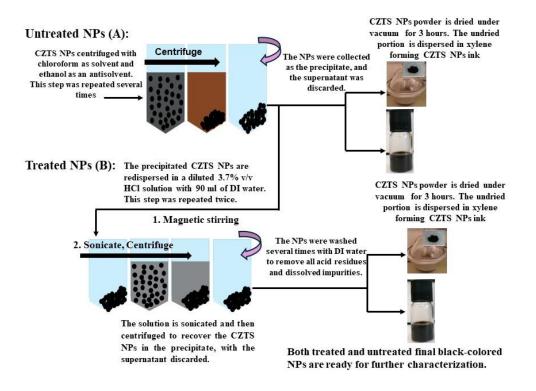


Fig. S8: The schematic of purification steps and CZTS NPs ink