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Supplementary Text 1: Tandem Neural Network

The tandem neural network has two parts, it utilizes a forward network and an inverse network
during training. In inverse design applications specifically, a forward model is initially trained to be
able to predict the response or output for any design within the parameters of the problem. In case of
training the forward model, the loss MSE was used, as shown in the equation:

L f orward =
1
n

n

∑
i=1

∥y(i)− ŷ(i)∥2 (1)

where y(i) is the true output, ŷ(i) is the predicted output for the i-th training sample and n is the
number of data points taken for the spectra.

Instead of directly training an inverse network to predict design based on desired responses, the
two models operate in tandem as a whole during training the inverse model. The loss is not calculated
directly based on the predictions of the inverse model. Rather the output from the inverse model is
passed to the forward model and the loss is calculated by comparing the response of predicted particles
with the desired response. MSE was also used in this case as the loss as shown in the equation:

Ltandem =
1
n

n

∑
i=1

∥y(i)− ŷ(x̂(i))∥2 (2)

where y(i) is the desired output, x̂(i) is the predicted output of the inverse model and ŷ(x̂(i)) is the
predicted response by the forward model for the i-th training sample and n is the number of data
points taken for the spectra. For the inverse model, the input was the spectral response, provided as
the condition input and the output was predicting the particle design.
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Supplementary Text 2: Conditional Variational Autoencoder Neural Network

Variational autoencoder is a type of generative model. In a generative model, a low dimensional latent
vector is converted into a high dimensional output by a neural network. A simple generative model
can be expressed by the following equation:

x = Gθ (z) (3)

Here, x is the high dimensional output, z is the low dimensional latent vector and Gθ is a generative
model parameterized by θ .

An autoencoder consists of an encoder network and a decoder network. The encoder network con-
verts the high dimensional input into a low dimensional latent vector, whereas the decoder network
converts the low dimensional latent vector into a high dimensional reconstructed output.

x′ = Dθ (Eφ (x)) (4)

Here, x is the input, x′ is the reconstructed output, Dθ is the decoder network parameterized by θ and
Eφ (x) is the encoder network parameterized by φ .

During training an encoder, the parameters are updated such that, the reconstructed output be-
comes similar to the original input given to the network.

min
θ ,φ

n

∑
i=1

∥∥Dθ

(
Eφ (xi)

)
− xi

∥∥2 w/ {xi}i=1−n (5)

A plain autoencoder is not a generative model, as it does not define a distribution.
The total loss function in a variational autoencoder comprises two loss functions serving different

functions. The two losses are reconstruction loss and Kullback-Leibler (KL) divergence loss. The
Reconstruction Loss measures the difference between the input x and the reconstructed output hatx.
If the input data is continuous, Mean Squared Error (MSE) can be used that calculates the squared
differences between x and x̂.

Reconstruction Loss = ||x− x̂||2 (6)

Here, x is the input and x̂ is the reconstructed output.
The KL Divergence Loss acts as a regularizer that ensures that the latent space qφ (z|x) follows a

prior distribution p(z), which is usually a standard normal distribution N(0, I).
The conditional variational autoencoder(cVAE) extends this architecture and introduces a condi-

tional input. This allows for the decoder to generate outputs based on a given input condition. The
conditional input is given to both the encoder and decoder networks during training. The encoder
network learns and establishes a relationship between the input condition and the latent variables.
During generation, the condition and latent vector are given to the decoder as inputs. This allows the
decoder to learn multiple solutions for the same condition as the value of the latent vector is different
for each solution.
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Fig. S1 Schematic of Tandem and cVAE models for inverse design of core-shell nanoparticles. The values within
the brackets represent the size of a particular layer. The Tandem model consists of a forward model and an inverse
model. The forward model predicts the optical spectrum from an input particle design, using a series of ResNet
blocks, while the inverse model takes the desired condition spectrum as input to reconstruct the particle design using
downsampling ResNet blocks and dense layers. In the cVAE model, the encoder takes both the particle design and
the condition spectrum as inputs. These inputs pass through ResNet blocks. The encoder then generates a latent
vector. The decoder then reconstructs the particle design based on the latent vector and input condition spectrum
using downsampling ResNet blocks and dense layers.
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Fig. S2 Training and validation loss curves for the forward networks (for tandem) used in the study. The model was
trained using the AdamW optimizer with an initial batch size of 16 and an initial learning rate of 0.01. The total
training time was 2.7 hours, and the model size is 5.45 MB.
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Fig. S3 Additional examples of the cVAE’s capability in predicting varied designs while maintaining accurate optical
properties are included.
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Fig. S4 Additional examples of the cVAE’s capability in predicting varied designs while maintaining accurate optical
properties are included. It shows the cVAE model traversing the latent space and trying multiple solutions for a given
input condition.
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Fig. S5 Illustration of the method for choosing z values. The search area is centered on the origin (0, 0), and a
5x5 grid of the latent space is examined. The z-value with the lowest MAE is used as the new origin in subsequent
iterations, with the search area size halved each time. This process is repeated five times to find the best z-value for
the final model prediction.
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Fig. S6 Comparison of root mean squared error (RMSE) between the spectral responses of the predicted designs and
the input condition spectra for both the tandem model and the cVAE model. (a) Scatter plot showing the RMSE for
500 randomly generated nanospheres. The cVAE model demonstrates better performance with a mean RMSE of 0.019
compared to 0.068 for the tandem model. (b) Scatter plot showing the robustness analysis with 100 test spectra.
The cVAE model achieves a mean RMSE of 0.076 compared to 0.104 for the tandem model, further confirming its
superior robustness.
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Fig. S7 RMSE distributions in the latent space for a particular test target.
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Fig. S8 Comparison of the experimental absorption cross-section (red curve) given to the models as the input
condition and the simulated response from the predicted inverse design particles from the cVAE models (dashed
black curve). The cVAE model, due to its advantageous diversity and robustness, shows a close match to the target
spectrum, resulting in a low MAE. The figure also illustrates that multiple solutions exist where the predicted spectrum
closely matches the target spectrum with varied geometrical parameters.
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Table S1 Material IDs and sources for refractive indices for the materials used during this work.

Material Ag Al Au Cu GaAs InAs InP Mo Si SiO2

ID 1 2 3 4 5 6 7 8 9 10

Ref. 1 2 1 3 4 5 5 6 5 7
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