## Light driven water oxidation on silica supported NiO-TiO<sub>2</sub> heteronanocrystals yields hydrogen peroxide

Nurul Muttakin,<sup>1</sup> Shelton J.P. Varapragasam,<sup>1</sup> Rashed Mia,<sup>1</sup> Mahfuz A. Swaden,<sup>1</sup> Michael Odlyzko,<sup>2</sup> James D. Hoefelmeyer\*<sup>1</sup>

<sup>1</sup> Department of Chemistry, University of South Dakota, Vermillion, SD 57069 <sup>2</sup> Characterization Facility, University of Minnesota, Minneapolis, MN 55455

\* Corresponding author email: james.hoefelmeyer@usd.edu

## Supporting information

## Contents

| <b>Figure S1.</b> HRTEM image of NiO-TiO <sub>2</sub> heteronanocrystal.                                                                                                                                                                                        | Page 2 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| <b>Figure S2. A)</b> UV-Visible absorption spectra of dilute dispersions of TiO <sub>2</sub> , TiO <sub>2</sub> -NiO, and B) Photoluminescence emission spectra ( $\lambda_{ex} = 300 \text{ nm}$ ) of anatase TiO <sub>2</sub> and TiO <sub>2</sub> -NiO HNCs. | Page 3 |
| <b>Figure S3</b> . Photograph of aqueous suspension of $SiO_2/NiO-TiO_2$<br>(NiO-TiO <sub>2</sub> heteronanocrystals supported on fumed silica) after 24 hours illumination with unfiltered light from 150W Xe arc lamp.                                        | Page 4 |
| <b>Figure S4.</b> a) Formation of Ag nanoparticles on the aqueous solution after irradiation of light in presence of photocatalyst and b) TEM image of Ag nanoparticles.                                                                                        | Page 5 |
| <b>Figure S5.</b> a) Formation of an iron (III) thiocyanate complex ion $Fe(SCN)^{2+}$ from $Fe^{3+}$ and $SCN^{-}$ in the reaction vessel b) absorbance maxima $\lambda_{max} = 450$ nm of $Fe(SCN)^{2+}$ taken at desired time interval.                      | Page 6 |
| Analysis of EDS data for NiO-TiO <sub>2</sub> heteronanocrystal sample.                                                                                                                                                                                         | Page 7 |



Figure S1. HRTEM image of NiO-TiO<sub>2</sub> heteronanocrystal.



**Figure S2.** A) UV-Visible absorption spectra of dilute dispersions of TiO<sub>2</sub>, TiO<sub>2</sub>-NiO, and B) Photoluminescence emission spectra ( $\lambda_{ex}$  = 300 nm) of *anatase* TiO<sub>2</sub> and TiO<sub>2</sub>-NiO HNCs.



**Figure S3**. Photograph of aqueous suspension of SiO<sub>2</sub>/NiO-TiO<sub>2</sub> (NiO-TiO<sub>2</sub> heteronanocrystals supported on fumed silica) after 24 hours illumination with unfiltered light from 150W Xe arc lamp.



**Figure S4**. Irradiation of SiO<sub>2</sub>/NiO-TiO<sub>2</sub> in dilute aqueous silver nitrate leads to formation of Ag nanoparticles. A) Photograph of the catalyst suspension after irradiation. B) TEM image of Ag nanoparticles.

Alternatively, we demonstrate a fast colorimetric test for hole scavenging upon irradiation of aqueous, anaerobic  $Fe^{2+}$  and thiocyanide ion that gives dark red colored solutions upon oxidation to  $Fe^{3+}$  (Figure S2). In these conditions, the absorbance at 450 nm abruptly rises, then decreases to a constant value that we presume is due to the back-reaction in which  $Fe^{3+}$  is reduced back to  $Fe^{2+}$  by photogenerated electrons on  $TiO_2$ .



**Figure S5**. a) Formation of an iron (III) thiocyanate complex ion  $Fe(SCN)^{2+}$  from  $Fe^{3+}$  and  $SCN^{-}$  in the reaction vessel b) absorbance maxima  $\lambda_{max}^{} = 450$  nm of  $Fe(SCN)^{2+}$  taken at desired time interval.

## Analysis of EDS data for NiO-TiO2 heteronanocrystal sample.

| Z  | Element Family<br>Mass Error (%) |   | Atomic Fraction (%)<br>Fit error (%) |      |       | Atomic Error (%) | Mass Fraction (%) |  |
|----|----------------------------------|---|--------------------------------------|------|-------|------------------|-------------------|--|
| 6  | С                                | К | 72.91                                | 5.19 | 57.99 | 2.48             | 0.09              |  |
| 7  | Ν                                | К | 0.00                                 | 0.04 | 0.00  | 0.04             | 0.00              |  |
| 8  | 0                                | К | 18.47                                | 3.92 | 19.57 | 4.00             | 0.15              |  |
| 11 | Na                               | К | 1.59                                 | 0.33 | 2.42  | 0.49             | 0.24              |  |
| 13 | AI                               | К | 2.02                                 | 0.42 | 3.60  | 0.73             | 0.23              |  |
| 14 | Si                               | К | 0.84                                 | 0.17 | 1.56  | 0.31             | 0.46              |  |
| 15 | Ρ                                | К | 0.21                                 | 0.04 | 0.43  | 0.08             | 2.18              |  |
| 19 | K                                | К | 0.34                                 | 0.06 | 0.87  | 0.16             | 0.88              |  |
| 22 | Ti                               | К | 0.75                                 | 0.11 | 2.38  | 0.33             | 0.38              |  |
| 26 | Fe                               | К | 0.16                                 | 0.02 | 0.59  | 0.08             | 1.26              |  |
| 28 | Ni                               | К | 2.73                                 | 0.41 | 10.60 | 1.48             | 0.12              |  |

2023-07-07 11:49:39 Analysis of spectrum: Spectra from Area #1 (Brown-Powell general)

2023-07-07 11:52:58 Analysis of spectrum: Spectra from Area #1 (Schreiber-Wims oxide-optimized)

| Z  | Element Family<br>Mass Error (%) |   | Atomic Fraction (%)<br>Fit error (%) |      |       | Atomic Error (%) | Mass Fraction (%) |  |
|----|----------------------------------|---|--------------------------------------|------|-------|------------------|-------------------|--|
| 6  | С                                | K | 69.25                                | 5.28 | 52.23 | 2.38             | 0.09              |  |
| 7  | Ν                                | K | 0.00                                 | 0.04 | 0.00  | 0.04             | 0.00              |  |
| 8  | 0                                | K | 19.87                                | 4.25 | 19.97 | 4.10             | 0.15              |  |
| 11 | Na                               | K | 1.83                                 | 0.39 | 2.64  | 0.54             | 0.24              |  |
| 13 | AI                               | K | 2.35                                 | 0.50 | 3.99  | 0.81             | 0.23              |  |
| 14 | Si                               | K | 0.99                                 | 0.20 | 1.74  | 0.34             | 0.46              |  |

| 15 | Ρ  | К | 0.25 | 0.05 | 0.48  | 0.09 | 2.18 |
|----|----|---|------|------|-------|------|------|
| 19 | К  | К | 0.41 | 80.0 | 1.00  | 0.18 | 0.88 |
| 22 | Ti | К | 0.94 | 0.14 | 2.82  | 0.40 | 0.38 |
| 26 | Fe | К | 0.21 | 0.03 | 0.75  | 0.11 | 1.26 |
| 28 | Ni | К | 3.90 | 0.60 | 14.39 | 2.03 | 0.12 |