Supporting information

Chiral induction in the crystallization of KIO3 and LiIO3, the role

of amino acids in controlling the chirality of inorganic crystals.

Matan Oliel,*a and Yitzhak Mastai^b

Department of Chemistry and Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 5290002.

Material	CAS number
L-Arginine	74-79-3
D-Arginine	157-06-2
L-Alanine	56-41-7
D-Alanine	338-69-2
КІО _з	7758-05-6
HIO3	7782-68-5
Li ₂ CO ₃	554-13-2
LiOH	1310-65-2
L-Tartaric Acid	87-69-4
D-Tartaric Acid	147-71-7
DL-Tartaric Acid	133-37-9

The following materials were purchased from Sigma Aldrich without any further purification:

S1: List of the materials that have been used in research.

S2: FTIR spectra of KIO₃ (I) and LiIO₃ (II): control (black), L chiral induced (red) and D chiral induced (blue) crystals displaying the I-O vibration modes.

S3: Raman spectra of KIO_3 (I) and $LiIO_3$ (II): control (black), L chiral induced (red) and D chiral induced (blue) crystals displaying the I-O vibration modes and the free translational motion of the iodate anion.

S4: Low Frequency Raman spectra of L-LiIO₃ (I) and D-KIO₃ (II): S-Polarization (black) and P-Polarization (red) displaying stronger signals at P-Polarization for L-induced LiIO₃ crystals and stronger signals at S-Polarization for D-induced KIO₃ crystals.