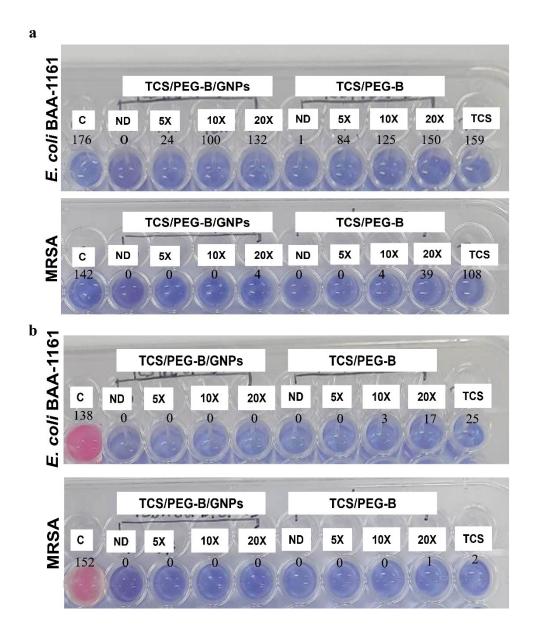
Improving aqueous solubility and antibacterial activity of triclosan using re-dispersible emulsion powder stabilized with gold nanoparticles

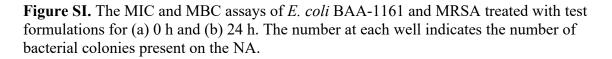
Arathy J Nair^{1,2}, Dakrong Pissuwan^{1,2}*

¹Materials Science and Engineering Graduate Program, Faculty of Science, Mahidol University, Bangkok 10400, Thailand ²Nanobiotechnology and Nanobiomaterials Research (N-BMR) Laboratory, School of Materials Science and Innovation, Faculty of Science, Mahidol University, Bangkok 10400, Thailand

EXPERIMENTAL SECTION

SI 1. Minimum Inhibitory Concentration (MIC) and Minimum Biocidal Concentration (MBC) Assays


E. coli BAA-1161 and MRSA bacteria were adjusted $OD_{600 \text{ nm}}$ to have a value at 0.5. Thereafter the serial dilution of bacteria was performed to obtain the bacteria at ~1.40-1.80 CFU mL⁻¹. Next, TCS/PEG-B (no-dilution, 5x, 10x, and 20 dilutions), TCS/PEG-B/GNPs (no-dilution, 5x, 10x, and 20 dilutions), or TCS (0.17 mg) dissolved in PBS (1 mL) at a volume of 100 µL were added in a 96 well-plate. The prepared bacterial suspension (100 µL) was added to each well containing the test formulations. The MIC and MBC tests were conducted using modified protocols from previous publications.^{1, 2} A solution of resazurin dye (0.3 mg mL⁻¹) was prepared and sterilized by passing it through a 0.2 μ m membrane filter. Resazurin dye (30 μ L) was added to each well and incubated for 24 h at 37 °C. The colour transformation from blue to pink was monitored. The MIC was determined based on the presence of blue resazurin. To determine the MBC at 0 and 24 h, 100 μ L of bacterial sample from each well was spread on NA and incubated for 24 h at 37 °C. The MBC value was determined when no colony growth was observed from the directly plated contents of the wells.


RESULTS AND DISCUSSION

At 0 h, the blue resazurin colour remained unchanged in *E. coli* BAA-1161 and MRSA bacteria treated with no-dilution, 5x, 10x, and 20 dilutions of TCS/PEG-B/GNPs and TCS/PEG-B, and TCS because this MIC test required incubation time. Nevertheless, only non-diluted TCS/PEG-B/GNPs complete destroyed (MBC) *E. coli* BAA-1161. In the case of MRSA, all concentrations of TCS/PEG-B/GNPs completely killed MRSA excepting for 20x dilution of TCS/PEG-B/GNPs. Non-diluted and 5x dilution TCS/PEG-B completely killed MRSA at 0 h (Figure SIa). These results confirmed that TCS/PEG-B/GNPs had the highest efficiency in destroying *E. coli* BAA-1161 and MRSA bacteria.

Upon treatment with the test formulations for 24 h, *E. coli* BAA-1161 and MRSA exhibited no change in the blue resazurin colour. However, the control bacteria (*E. coli* BAA-1161 and MRSA without treating with the test formulations) appeared pink. All concentrations of TCS/PEG-B/GNPs completely killed *E. coli* BAA-1161bacteria. In contrast, only the non-diluted TCS/PEG-B and its 5x dilution completely killed *E. coli* BAA-1161. Similar to *E. coli* BAA-1161, all concentrations of TCS/PEG-B/GNPs completely killed after treating with all concentrations of TCS/PEG-B excepting for 20x dilution (Figure SIb). TCS dissolved in PBS had a small effect on inhibiting the growth of *E. coli* BAA-1161 and MRSA (Figure SIa&b).

Overall, the MIC/MBC tests provided the same direction of the results as the plate count agar approach, which was similar to a previous study.² These tests also confirmed that TCS/PEG-B/GNPs were highly effective in *E. coli* BAA-1161 and MRSA destruction due to bioviability of TCS in the formulation.

References

(1) Elshikh, M.; Ahmed, S.; Funston, S.; Dunlop, P.; McGaw, M.; Marchant, R.; Banat, I. M. Resazurin-based 96-well plate microdilution method for the determination of minimum inhibitory concentration of biosurfactants. *Biotechnol. Lett.* **2016**, *38*, 1015-1019.

(2) Costa, P.; Gomes, A. T. P. C.; Braz, M.; Pereira, C.; Almeida, A., Application of the resazurin cell Viability assay to monitor *Escherichia coli* and *Salmonella typhimurium* inactivation mediated by phages. *Antibiotics* **2021**, *10*, 974.