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We report on the experimental realization of Pb1−xSnxTe pentagonal nanowires (NWs) with [110]
orientation using molecular beam epitaxy techniques. Using first-principles calculations, we inves-
tigate the structural stability in NWs of SnTe and PbTe in three different structural phases: cubic,
pentagonal with [001] orientation and pentagonal with [110] orientation. Within a semiclassical
approach, we show that the interplay between ionic and covalent bonds favors the formation of
pentagonal NWs. Additionally, we find that this pentagonal structure is more likely to occur in
tellurides than in selenides. The disclination and twin boundary cause the electronic states originat-
ing from the NW core region to generate a conducting band connecting the valence and conduction
bands, creating a symmetry-enforced metallic phase. The metallic core band has opposite slopes
in the cases of Sn and Te twin boundary, while the bands from the shell are insulating. We finally
study the electronic and topological properties of pentagonal NWs unveiling their potential as a
new platform for higher-order topology and fractional charge. These pentagonal NWs represent a
unique case of intrinsic core-shell one-dimensional nanostructures with distinct structural, electronic
and topological properties between the core and the shell region.

Appendix A: Experimental setup

Pb1−xSnxTe NWs were grown by molecular beam epi-
taxy technique in a home-built system equipped with
SnTe, Pb and Te solid sources. We used commercial
(Azelis, France) both (100)- and (111)-oriented p-Si sub-
strates covered with a relatively thin oxide layer (up to 10
Å) such that we observed slight streaky reflection high-
energy electron diffraction (RHEED) patterns even with-
out any surface preparation. Covering the surface with
an amorphous SiOx layer prevents deposition directly on
monocrystalline silicon. On the other hand, these oxides
support the mobility of the adatoms on the surface. To
uncover Si, the etching procedure in HF was employed.
Different solutions of acid (from 8% to 40%), as well as
various times of etching (up to 2 min), were applied re-
sulting in different oxides covering stages. The aim was
to achieve separated pinholes in oxide which can play the
role of the base for the nucleation center. Before loading
into load-lock the freshly etched Si substrates were kept
in ethanol to protect them against the air. Instead of
the typically exploited vapor-liquid-solid (VLS) mode of
growth effective for IV-VI, e.g. using Au nanodroplets
as a catalyst1, we applied vapor-solid (VS) mode. The
growth temperature was in the range from 450 ◦C to 500
◦C. The SnTe/Pb molecular beam flux ratio was kept to
obtain x ≈ 0.50± 0.05 in Pb1−xSnxTe. The total molec-

ular flux used to grow NWs corresponds to the rate of
growth for layers from 0.1 Å/s to 0.2 Å/s. This results
in NWs longer than 1 µm and the rate of NWs growth
higher than 0.5 µm/h. Diameters of the NWs show rela-
tively wide distribution from the smallest around 15 nm
to even 200 nm with the maximum at approximately 40-
80 nm. Under these conditions both types of NWs are
observed, i.e., exhibiting four-fold and five-fold symmetry
of cross-section (see Fig. ??a).

SEM observations were made using Scanning Electron
Microscope ZEISS Auriga - CrossBeam Workstation, im-
ages were made at 5 kV with magnification from 10k to
300k x. The images show that the length of the NWs
varies from 0.7 µm to 3 µm, and the width of the struc-
tures ranges between 40-150 nm. The surface density
is from 0.1 to even 5 µm−1. On the substrate, we ob-
served five-fold NWs with greater amounts, less often
four-fold NWs. Structures are symmetrical and well-
shaped with visible blocks. The surface of the NWs was
smooth without any imperfections. Structural proper-
ties of the Pb1−xSnxTe NWs were examined using FEI-
Titan 80-300 transmission electron microscope operat-
ing at 300 kV, equipped with an image corrector and
HAADF scanning transmission electron microscopy de-
tector. The cross-sectioned NWs were prepared with the
Thermo Scientific’s Helios G1 NanoLab DualBeam 600
Scanning Electron Microscope, with FIB (Focused Ion
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Beam)- resolution of 5.0 nm at 30 kV, and lift-off proce-
dure for cross-sections with an Omni-Probe nanomanip-
ulator. The cross-sectioned NWs were investigated in the
zone axis [110] which is parallel to the NWs growth axis,
in scanning transmission electron microscopy as well as in
high-resolution transmission electron microscopy mode.
The five-fold symmetry was confirmed, and the (111)
planes twin boundaries were visible as well as brighter
areas on the twin. These areas are related to strain fields
that are visible to distinguish for observations under cam-
era length 0.230 m. EDS determined the averaged ele-
mental ratio as Sn:Pb = 55:45 (∼1:1).

The pentagonal NWs grow directly on both the sub-
strate and the crystallites. The occurrence of pentagonal
NWs is observed regardless of the substrate orientation
Si(100) or Si(111). Therefore, the growth of pentagonal
nanowires appears in a relatively broad range of growth
conditions.

The crystal structure can be switched from cubic to
pentagonal during the growth process to create het-
erostructure nanowires as shown in Fig. 2 of the
main text. In particular, this is the result of the
PbTe/(Pb,Sn)Te//Si(100) growth process. In the first
part, the growth time of (Pb,Sn)Te was 120 min, while
in the second part, we grew PbTe for only 10 min. How-
ever, Fig. 2 of the main text shows that the lengths of
the two NW parts are comparable. The growth of PbTe
was carried out by turning off the SnTe flux for initial
(Pb,Sn)Te and the PbTe flux remained unchanged. This
means that the growth rate in the PbTe part decreased
3 times, for this particular condition. The growth time
was 12 times shorter. Hence, it suggests that both parts
consist of (Pb,Sn)Te rather than PbTe/(Pb,Sn)Te. Fur-
ther studies would be needed to establish the chemical
composition of both parts of these NW heterostructures.

Appendix B: Computational details

Electronic structure calculations were performed
within the framework of the first-principles density
functional theory based on plane wave basis set and
projector augmented wave method using VASP2 pack-
age. The structural relaxations are performed without
SOC, while all the band structure calculations of the
main text are fully relativistic by considering SOC, a
plane-wave energy cut-off of 250 eV has been used. As an
exchange-correlation functional, the generalised gradient
approximation of Perdrew, Burke, and Ernzerhof has
been adopted3. We have performed the calculations
using 1×1×12 k-points centered in Γ. The electronic
band structures are computed with 60 k-points between
the Γ and Z direction. The convergence criterion for
the force is considered to be 0.01 eV/Å, while 10−5 eV
of energy tolerance is taken for structural relaxation.
In the high-symmetric structure, we study the systems
without structural relaxation to study the system with
perfect C4 symmetry in the regions among the twinnings.

FIG. 1. Three types of polygon i.e. cubic, pentagon and
hexagon are considered to calculate the particle density and
Madelung constant. The atoms are represented by circles.
The N red atoms on the vertices have a radius of R, while the
N blue atoms on the sides of the polygons have a radius of r.
The size of the blue and red atoms is defined to maximize the
area occupied. This maximizes the density and atomic pack-
ing factor from a physical point of view; from a mathematical
point of view this constraints a relation between r and R such
that the density is only a function of one variable that we
choose to be x equal to the ratio between the two radii.

Appendix C: Semiclassical approach to describe the
stability of ionic pentagonal NWs

Since the pentagonal geometry is poorly studied, we
also calculated some semiclassical quantities to unveil
the reasons for its structural stability. For instance,
the Madelung constant and the particle density for three
types of polygons such as square, pentagon, and hexagon
are calculated. Finally, we combine both the properties
in one plot showing that the pentagonal NWs can be
formed in case of an interplay between ionic and covalent
bonds.

The three types of polygons considered are shown in
Fig. 1. Two types of atoms with different atomic radii
are studied and general equations for particle density in
two dimensions (2D) are used. The atoms are positioned
on the sides and corners of the polygon, the size of the
side atoms (r) is variable and smaller than the corner
atoms (R). Hence, two regions are studied i.e. r<rc and
r>rc. Here rc is the critical value of the radius for which
the side atom touches the corner one and the density
becomes maximum. The general formula for the particle
density DN in the case of NWs with a polygonal section
having N sides (N is 4, 5 and 6 for the square, pentagon
and hexagon respectively) can be written as;

DN =
Area of occupancy of atoms

Total area of the Polygon with N sides

DN (x) =


π

4 sin( 2π
N )

(
1 + x2

)
if 0<x<xc

π
2

tan( π
N

)
(

1− 2x
(1+x)2

)
if x>xc

(C1)

We define x=r/R where r is the radius of the side atoms
and R is the radius for the atom at the corners. The par-
ticle density DN (x) reaches a maximum at a critical value
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x=xc and afterward starts to decrease. We are interested
in analyzing the dependence of the density DN (x) from
the number N of sides of the polygon; the easiest way is
to evaluate the density at x=0. In the square environ-
ment, the particle density is calculated to be 0.785 for x=
0 (r = 0), while it is increased to 0.919 if the radius of
the atom located on the side of the polygon approaches
the critical value xc by touching the corner atoms. How-
ever, the density again decreases for x > xc and becomes
0.785 when r = R. An almost similar trend is followed
by pentagons and hexagons. We want to focus on the de-
pendence of the density from N that is in the coefficient
and independent from x. Therefore, we evaluate the par-
ticle densities at x = r = 0 and report them in Table I.
We got the highest density for the hexagonal structure,
the lowest for the square, and the intermediate for the
pentagon. The hexagonal structure possesses the highest
particle density revealing that the covalent bond is favor-
able in this case, which means more covalent character
pushes the system to stay in the hexagonal phase.

Polygon Particle density Madelung constant

Square 0.785 1.172

Pentagon 0.825 0.694

Hexagon 0.906 0.464

TABLE I. Particle density and Madelung constant calculated
for the square, pentagonal, and hexagonal structures. We
assume Q=d=1.

FIG. 2. Particle density (on the right y-axis, red) and
Madelung constant (on the left y-axis, blue) calculated for
the square, pentagonal, and hexagonal structures. The pen-
tagonal structure bears the intermediate values for both the
Madelung constant and particle density.

The Madelung constant determines the electrostatic
potential for a single ion in a crystal by approximating

the ions with point charges. The Madelung constant is
a quantity typically referred to periodic lattices, in this
case, it is meant to infer the electrostatic potential at the
core center that would help to stabilize the formation
of the NWs. We calculate the Madelung constant for
square, pentagon, and hexagon. Generally, the Madelung
constant is defined as:

MN =
∑
j

zj

rij

where zj is the number of j-th ions, rij is the distance
between the ions with N= 4, 5, and 6 for the square,
pentagonal, and hexagonal structures, respectively. Con-
sidering Q (opposite for the two atoms) as the charge and
d as the distance between the two atoms, in the case of
a square structure, we have:

M4 =
Q

d

(
4−

4
√
2

)
= 1.172

Q

d

In the case of a pentagonal structure:

M5 =
Q

d

(
5
√

10−2
√
5

√
5+1

− 5
√

10−2
√
5

4

)
= 0.694

Q

d

while for the hexagonal structure:

M6 =
Q

d

(
2
√

3− 3
)

= 0.464
Q

d

The value of the Madelung constant is very crucial in
the case of ionic bonds. As expected, we got the high-
est value of the Madelung constant for the square system
(1.172) and the lowest (0.464) for the hexagon, while the
pentagon bears the intermediate value (0.694). The large
value of the Madelung constant for a square system indi-
cates the highest contribution to ionicity and implies an
ionic insulator scenario, which favors the system to be in
the cubic structure.

For thick shells, most of the volume of the pentagonal
NW will have the cubic arrangement so that the binding
energy of the pentagonal NW will converge to the
binding energy of the cubic structure as we observe from
our results on the binding energy in the main text. For
thick shells, the Madelung constant of the pentagonal
structure will converge as well to the Madelung constant
of the cubic structure for the same reasons. However,
the Madelung constant for small thicknesses that we
have calculated should be the relevant quantity in the
formation of the disclination during the initial phase of
the growth process.

This manifestation of the highest Madelung constant
and lowest particle density for the square indicates the
dominance of ionic character in the cubic structure,
while the lowest Madelung constant and highest particle
density for the hexagonal structure indicate that the
system presents a more covalent character in this phase.
On the other hand, intermediate values of Madelung
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FIG. 3. Band structures of SnTe and PbTe pentagonal NWs
in the Γ − Z direction grown along [110] with cationic twin-
boundaries without SOC. (Left panel) SnTe NWs, (right
panel) PbTe NWs. One can see a band in most cases, which
connects the valence and conduction electrons giving rise to
metallicity. The Fermi level is set to zero.

constant and particle density for the pentagonal shape
(see Fig. 2) reveal the contribution of both the ionic
and covalent characters in the bond formation, which
implies that if the bond is partially ionic and partially
covalent, the pentagonal structure is expected to be
the most stable. In the NWs based on lighter elements
such as Se and Sn, the bonds would be more ionic,
therefore we expect to be less likely to form a pen-
tagonal crystal structure. Therefore, NWs based on
Pb and Te would be more likely to form pentagonal NWs.

To summarize, from a semiclassical point of view,
we understand that the interplay between covalent and
ionic bonds favors the formation of pentagonal NWs.
The quantum calculations reported in Section III of the
main text demonstrated that the pentagonal NWs are
metastable with the ground state being the cubic NWs.
The difference between the ground state energies of cu-

bic and pentagonal NWs becomes very small for thick
NWs paving the way for the experimental formation of
pentagonal NWs.

FIG. 4. (a) Band decomposed charge density obtained at dif-
ferent points along the Γ − Z direction for the pentagonal
NWs oriented in [110]. The charge density is distributed in
the center of NW in real space when it is not hybridized (in-
dicated by the red dot in the middle). (b) Band structure of
the 3-ring pentagonal NW without the core chain, the band
connecting the valence and conduction electrons disappears.

Appendix D: Band structure of the [110] pentagonal
SnTe and PbTe NWs without SOC

In Fig. 3 we show the band structures of these sys-
tems without considering SOC interaction; here, both
the compounds manifest bands that connect valence and
conduction regions except 1-ring PbTe NW, which has
an indirect band gap of 0.423 eV. The band connecting
valence and conduction at the Γ point is in the conduc-
tion band and goes in the valence band increasing k as
opposite to the pentagonal NW with [001] orientation.
In Appendix E, we show that the core chain is responsi-
ble for the metallicity in the systems. Indeed, the band
connecting the valence and conduction electrons disap-
pears when the core chain of atoms is removed. There-
fore, this band connecting valence and conduction is not
related to topological properties since is not a surface
band. This band, coming from the one-dimensional core
chain, is composed of pz orbitals of Sn and Te with a
very short distance, therefore it would be very difficult
to reproduce within the tight-binding models based on a
bulk cubic environment with the normal lattice constant.
The central atoms (a Sn and Te atom in the unit cell)
have around 0.5 electrons more than other atoms, while
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FIG. 5. Band structure for the optimized 5-ring pentagonal
NW with Sn-twin boundary using ONETEP. The top panel
is without SOC, while the bottom panel is with SOC. This
figure should be compared with Fig. 5 of the main text.

the first and second-ring atoms have a little less charge
of around 0.01 electrons. These 0.5 electrons are due to
the different structural environments of the CC or to the
fractional charge.

Appendix E: Removing the core chain

Here, we calculate the band decomposed charge den-
sity at different k-points along the Γ − Z direction for
the SnTe pentagonal NWs oriented along [110]. To check
the influence of the core chain on the electronic struc-
ture, we show the band decomposed charge density in
Fig. 4. The charge density for the band connecting the
valence and conduction sectors is distributed in the cen-
ter of NW in real space when we consider a point in the
middle of this band, namely not hybridized. Instead,
when we take points where this band is hybridized with
other electronic bands, the charge density is distributed
in other regions as well, as shown in Fig. 4a). These
results clearly indicate that the core chain is responsible
for the metallicity in the systems. Further confirming
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FIG. 6. Band structure for the optimized 5-ring pentagonal
NW with Te-twin boundary using ONETEP. The top panel
is without SOC, while the bottom panel is with SOC. This
figure should be compared with Fig. 5 of the main text.

this claim, we removed the core chain of the 3-ring pen-
tagon (the remaining crystal structure is composed of
only atoms in a NaCl-phase environment with 6 near-
est neighbors) and calculated its band structure as illus-
trated in Fig. 4b). The band connecting the valence and
conduction electrons disappears when the core chain of
atoms is removed. The pentagonal SnTe NW without the
core chain becomes a simple band insulator as expected
for SnTe NWs with a cubic environment in the ultrathin
limit. We observe the same behavior also for the [001]
pentagonal NWs.

Appendix F: Reproducing the electronic structure
within the ONETEP code

To double-check the results obtained within VASP,
we perform electronic structure calculations with a DFT
code that uses a different basis for the charge density
as ONETEP4,5. The computational framework was pre-
sented in a previous paper6. The results are reported
in Figs. 5 and 6 for the 5-rings optimized structure of
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FIG. 7. Band structure for the high-symmetric 5-ring pen-
tagonal NW with Sn-twin boundary using ONETEP. The top
panel is without SOC, while the bottom panel is with SOC.
This figure should be compared with Fig. 6 of the main text.

SnTe with Sn and Te twin boundaries, respectively. The
results for the 5-rings of SnTe with high-symmetry struc-
ture and with Sn and Te twin boundaries are reported
in Figs. 7 and 8, respectively. In order to do this, we
repeat the unit cell three times along the c-axis, this pro-
duces a triple downfolding of the band structure. Due
to the downfolding, the metallic band has an opposite
inclination with respect to the VASP but the results are
strongly consistent with the VASP results. The SnTe
band structures within ONETEP show a slightly larger
gap for the shell bands as it happens in the cubic NWs6.

Appendix G: Band structure under applied pressure

The study of the topological properties in the cubic
NWs is extremely demanding computationally because
of the thickness dependence of the topology. Indeed,
we need to have a large thickness to reach the topolog-
ical phase in the cubic NWs. In cubic bulk SnTe and
PbTe compounds, the effect of the compression pushes
the SnTe material-class compounds toward the topologi-
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FIG. 8. Band structure for the high-symmetric 5-ring pen-
tagonal NW with Te-twin boundary using ONETEP. The top
panel is without SOC, while the bottom panel is with SOC.
This figure should be compared with Fig. 7 of the main text.

cal region of the phase diagram. Since our thin NWs are
extremely thin the cubic shell region is in a trivial regime,
we apply compression in order to observe the topological
transition in the shell region. The transition of the cubic
shell from the trivial to the topological phase for the pen-
tagonal NWs should go through a closure of the trivial
band gap at one or both high-symmetry points Γ and Z.
The effect of compression on the electronic band struc-
tures of symmetric 5-ring SnTe pentagonal NW with Te
on the twin boundaries is shown in Fig. 9. We notice a
reduction of the band gaps at Γ and Z, the systems be-
come more metallic as the compression is increased due
to the increasing of the bandwidth as happens in bulk
phases7, however, no closure of the gap at Γ or Z is ob-
served. Even if the thickness is too thin to develop a
topological phase in the cubic SnTe, we have the con-
nection between valence and conduction due to the core
chain persisting at every pressure.
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FIG. 9. Band structures of the high-symmetric 5-ring SnTe
pentagonal NW with Te on the twin boundaries for the un-
compressed and compressed systems. The calculations were
performed with SOC. The Fermi level is set to zero.

Appendix H: Model Hamiltonian and its symmetries

Our starting model is composed of a p-orbital tight-
binding Hamiltonian (p-orbitals for the cations and p-
orbitals for the anions) described in the following for-

mula:

H(k) = m12⊗13⊗Σ + t12
∑

α=x,y,z

12⊗(13 − L2
α)⊗hα(kα)

+t11
∑
α 6=β

12⊗
[
13 −

1

2
(Lα + εαβLβ)

2

]
⊗hα,β(kα, kβ)Σ

+
∑

α=x,y,z

λα σα⊗Lα⊗18, (H1)

which has been used for describing the bulk topologi-
cal crystalline insulator phase in the SnTe materials7

and various topological phases in lower dimensional
systems8,9. Here we have chosen a cubic unit cell con-
taining eight lattice sites, Σ is a diagonal 8 × 8 matrix
with entries Σi,i = ∓1 at the two sublattices (Sn and
Te atoms), εαβ is Levi-Civita symbol, Lα = −iεαβγ are
the 3 × 3 angular momentum L = 1 matrices, σα are
Pauli matrices, and hα(kα) and hα,β(kα, kβ) are 8×8 ma-
trices describing hopping between the nearest-neighbors
and next-nearest-neighbor sites, respectively. In inves-
tigations of topological properties, it is useful to allow
the spin-orbit coupling to be anisotropic, hence λα, al-
though in this case, we have used λα ≡ λ. For this paper,
we have used numerical values that reproduce the band
structure of SnTe which are m = 1.65 eV, t12 = 0.9 eV,
t11 = 0.5 eV and λ = 0.3 eV.
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