Vertical heterostructure of graphite-MoS₂ for gas sensing

M. Tripathi^{1*#,} G. Deokar^{2#}, J. Casanova-Chafer³, J. Jin², A. Sierra-Castillo⁴, S. P. Ogilvie¹, F. Lee^{1, 5}, S. A. Iyengar⁶, A. Biswas⁶, E. Haye⁷, A. Genovese⁸, E. Llobet³, J- F Colomer⁴, I. Jurewicz⁹, V. V. Gadhamshetty^{*10}, P.M. Ajayan⁶, Udo Schwingenschlögl², Pedro M. F. J. Costa², A. B. Dalton^{1*}

¹ Department of Physics and Astronomy, University of Sussex, Brighton BN1 9RH, U.K. ²King Abdullah University of Science and Technology (KAUST), Physical Science and Engineering Division, Thuwal, 23955 - 6900, Saudi Arabia ³ Universitat Rovira i Virgili, MINOS, Avda. Països Catalans, 26, 43007 Tarragona, Spain ⁴Research Group on Carbon Nanostructures (CARBONNAGe), University of Namur, 5000 Namur, Belgium. ⁵ International Institute for Nanocomposites Manufacturing (IINM), WMG, University of Warwick, Coventry CV47AL,U.K. ⁶ Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States. ⁷Laboratoire d'Analyse par Réactions Nucléaires (LARN), Namur Institute of Structured Matter (NISM), University of Namur, 61 Rue de Bruxelles, 5000 Namur, Belgium ⁸ King Abdullah University of Science and Technology, Core Labs, Thuwal, 23955-6900, Saudi Arabia ⁹Department of Physics, Faculty of Engineering & Physical Sciences, University of Surrey, Guildford GU2 7XH, UK ¹⁰Department Civil and Environmental Engineering, South Dakota School of Mines and

Technology, Rapid City, SD, 57701 USA

Supplementary Information

Figure S1: Preparation of the hybrid structure. Schematic view illustrating the different stages of formation of vertically aligned MoS_2 over nano-thick graphite surface. Initially, there is a polymer-free transfer of graphite film (NGF) over the silica substrate, followed by Mo sputtering and rapid sulfurization. (b) The optical image contrast of the MoS_2 sheet over Silica substrate and graphite are marked by arrows for distinction. (c) SEM micrography of MoS_2 granular sheet over silica. (d) SEM micrograph of MoS_2 granular sheet over wrinkled graphite layers.

Figure S2: Cross-section view of the hierarchy of the hetero-hybrid structure. Left-hand side is SEM image of hierarchical architecture as (top) MoS₂/NGF/SiO₂/Si substrate. In the series of images from left to right-hand side, there is the elemental distribution in the Z-direction revealing the hierarchy of Si, O, C, Mo, S, respectively. It is worth noting that the elemental mapping of carbon is not from the NGF but a deposited polymeric layer during Energy-

dispersive X-ray (EDX) analysis. The NGF layers sandwiched between SiO_2 and MoS_2 is too thin to resolve in the present setup.

Figure S3: (a) AFM topography of NGF surface shows top-view landscale of graphene wrinkles, grain boundary (depression region) and basal plane. (b) High-resolution side view TEM image of NGF and MoS₂ shows horizontal stacking of graphite sheets and vertically aligned MoS₂.

Figure S4: Appearance of the hybrid heterostructure. SEM micrographs of MoS_2 granular flakes distribution over NGF at different locations (a) basal plane, (b) structural defect and (c) step-edge. The density of MoS_2 varies with the size of Mo NPs, the size of 10 nm Mo film is relatively less populated than that of 20 nm Mo sulfurized film.

Figure S5: Schematic correlation plot of MoS₂ deconvoluting strain and doping

The Raman peak shifts ω of E_{2g}^1 and A_{1g} from the strain-free and doping-free positions can be related to the mechanical strain ε and the electrical doping *n* by a linear transformation, *i.e.*,

$$\begin{pmatrix} \omega_{E^{1}2g} \\ \omega_{A_{1g}} \end{pmatrix} = \begin{pmatrix} -2\gamma_{E^{1}2g} & k_{E^{1}2g} \\ -2\gamma_{A_{1g}} & k_{A_{1g}} \end{pmatrix} \begin{pmatrix} \varepsilon \\ n \end{pmatrix}$$
where $\gamma_{E^{1}2g} = 0.86$ and $\gamma_{A_{1g}} = 0.15$ are the Grüneisen parameters, while $k_{E^{1}2g} = -0.33 \times 10^{-13} \, cm^{-1}$
and $k_{A_{1g}} = -2.22 \times 10^{-13} \, cm^{-1}$ are the doping shift rates. With this linear transformation, the strain
and doping axes, as well as iso-strain and iso-doping contours can be constructed. The strain and
doping can then be evaluated by projecting the peak positions onto the strain and doping axes.

Figure S6: Surface potential map of MoS_2 and vertical heterostructure of MoS_2 over graphite. (a) Surface potential map of an MoS_2 over silica substrate. The surface potential reveals the contrast in contact potential difference (CPD, mV/V), indicating the distribution in carrier concentration. The brightest region represents the p-doped region (silica substrate), and the dark region represents the electron-rich region. Here, the edges of MoS_2 reveal the higher electron concentration, indicating a drop in the CPD values confirmed by the average line profile. (b) The surface potential map of MoS_2 over graphite flakes shows higher electron concentration in MoS_2 , indicated through dark colour in the CPD map and a decrease in the surface potential profile. (c) Exposure of the MoS_2 -graphite heterostructure to nitronium ions shows p-doping of MoS_2 , as indicated by the increase in the CPD values. (d) Exposure of the MoS_2 -graphite heterostructure to ammonium ions shows n-type doping in the OS_2 , as there is the drop in the CPD values.

Figure S7: Density functional theory simulations. (a, b) Top views of the graphene and MoS_2 supercells. Optimized structures of the stacking configurations (c) AB, (d) AB1, and (e) AB2 of the S-terminated MoS_2 on graphene. Optimized structures of the stacking configurations (f) AB, (g) AB1 and (h) AB2 of the Mo-terminated MoS_2 on graphene.

Figure S8: Charge transfer. Side views of the charge redistributions between the graphene/MoS₂ hybrid structure with Mo-termination (towards the analyte molecules) and (c) H_2O , (d) NH_3 , and (e) NO_2 . Green and orange isosurfaces (isovalue: 0.001 electrons/Å³) represent charge depletion and accumulation, respectively. The gray, yellow, purple, white, red, and blue spheres represent the C, S, Mo, H, O, and N atoms, respectively.

Table S1: Adsorption energies (E_a) of the analyte molecules and charge transfer (Δq) between the graphene/MoS₂ hybrid structure and analyte molecules. Positive (negative) Δq represents charge transfer from the graphene/MoS₂ hybrid structure to the analyte molecules (from the analyte molecules to the graphene/MoS₂ hybrid structure).

	H ₂ O		NH ₃		NO ₂	
	Ea	Δq	E_{a}	Δq	E_{a}	Δq
S-	-0.09	0.01	-0.11	-0.01	-0.13	0.21
termination						
Mo-	-1.20	0.10	-1.55	-0.05	-4.42	1.02
termination						

Figure S9: Recovery tests when detecting NO₂, left side (room temperature) and right (150 °C)

Figure S10: Increment in the response from the hybrid sensor during NH₃ exposure for different concentrations at elevated temperatures.

Figure S11: Morphology of exposed MoS_2 . (a) Topography of MoS_2 treated with (a) aqueous solution of NO₂ and (b) NH₃ as NH₄OH. The topography was taken after drying of the solution and accumulation of salts were monitored. The ammonium salts are distributed uniformly over the basal plane of MoS_2 , while salts of the nitro group mostly appear at the edge of MoS_2 .

Nanomaterial	T° (C)	Carrier gas	Sensitivity coefficient (response/ppm)	RH study	Flow rate (sccm)	Reference
MoS ₂ /Graphite	150	Air	1.67	Yes	100	Current work
UFew-Layer Graphene (FLG)	100	Air	0.83	Yes	100	Deokar et al. ¹
MoS ₂ /VACNT	RT/100 ^a	Air	0.64	Yes	100	Deokar et al. ²
MoS ₂ /Graphene	RT (UV)	Air	0.08	No	NA	Kumar et al. ³
MoS ₂ /rGO	60	Air	0.02	Yes	500	Zhou et al. ⁴
MoS ₂ - rGO/CNT	RT (UV)	Air	0.017	No	NA	Ghasemi ⁵
MoS ₂ /rGO	RT	Nitrogen	0.004	No	1000	Mukherjee et al. ⁶

Table S2. Performance comparison in the detection of NO₂ with previously reported sensors.

MoS ₂ /rGO	50	Air	0.6	No	175	Kumar et al. ⁷
MoS ₂ /GA	200	Air	3.4	No	300	Long et al. ⁸
Pure MoS ₂	100	Air	1.4	Yes	100	Annanouch et
						al. ⁹

Reference:

- 1. G. Deokar, J. Casanova-Cháfer, N. S. Rajput, C. Aubry, E. Llobet, M. Jouiad and P. M. F. J. Costa, *Sensors and Actuators B: Chemical*, 2020, **305**, 127458.
- G. Deokar, P. Vancso, R. Arenal, F. Ravaux, J. Casanova-Cháfer, E. Llobet, A. Makarova, D. Vyalikh, C. Struzzi and P. Lambin, *Advanced Materials Interfaces*, 2017, 4, 1700801.
- 3. R. Kumar, N. Goel and M. Kumar, ACS sensors, 2017, 2, 1744-1752.
- 4. Y. Zhou, G. Liu, X. Zhu and Y. Guo, Sensors and Actuators B: Chemical, 2017, 251, 280-290.
- 5. F. Ghasemi, *Scientific Reports*, 2020, **10**, 11306.
- 6. A. Mukherjee, L. R. Jaidev, K. Chatterjee and A. Misra, *Nano express*, 2020, 1, 010003.
- 7. R. Kumar, N. Goel, A. V. Agrawal, R. Raliya, S. Rajamani, G. Gupta, P. Biswas, M. Kumar and M. Kumar, *IEEE Sensors Journal*, 2019, **19**, 10214-10220.
- 8. H. Long, A. Harley-Trochimczyk, T. Pham, Z. Tang, T. Shi, A. Zettl, C. Carraro, M. A. Worsley and R. Maboudian, *Advanced Functional Materials*, 2016, **26**, 5158-5165.
- 9. F. E. Annanouch, A. Alagh, P. Umek, J. Casanova-Chafer, C. Bittencourt and E. Llobet, *Journal of Materials Chemistry C*, 2022, **10**, 11027-11039.