Supplementary

White Light Powered Antimicrobial Nanoagents for Triple Photothermal, Chemodynamic and Photodynamic Based Sterilization

Hua Tian^{a,c,‡}, Houjuan Zhu^{b,‡,*}, Yuling Xue^a, Maonan Wang^d, Kuoran Xing^a, Zibiao

Li^b, Xian Jun Loh^b, Enyi Ye^b, Xianguang Ding^e, Bang Lin Li^f, Xueqiong Yin^{c,*}, David

Tai Leong^{a,}*

^aDepartment of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore.

^bInstitute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore.

^cHainan Provincial Fine Chemical Engineering Research Centre, Hainan University, Haikou, Hainan, 570228, P.R. China.

^dDepartment of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, China.

^eKey Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Nanjing University of Posts & Telecommunications, Nanjing, 210023 China.

^fSchool of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.

*Corresponding author. E-mail: <u>cheltwd@nus.edu.sg;</u> <u>zhu_houjuan@imre.a-</u> <u>star.edu.sg;</u> <u>yxq88@hotmail.com</u>

‡Equal contributions

Fig. S1 Nanodevice characterization. TEM images of (a) CoS_x QDs, (b) CDs, (c) GCDCO, (d) Particle size of CoS_x QDs, (e) XRD pattern of CDs.

Fig. S2 Photothermal evaluation of CoS_x QDs irradiated by sunlight. (a) Photothermal heating curves of CoS_x QDs solutions with various concentrations irradiated by simulated sunlight. (b) Infrared thermal images of CoS_x QDs solutions at the indicated concentrations and irradiated for different durations. (c) Photothermal stability of CoS_x QDs over 5 on/off cycles of simulated sunlight irradiation (200-2500 nm, 2335)

Fig. S3 (a) A/A_0 of different DAB reaction systems at different time without H_2O_2 . (b) Degradation of MB of different reaction systems without H_2O_2 at different time.

Fig. S4 ROS production from GCDCO. (a) Time-dependent fluorescence changes without cold-light irradiation (400-800 nm, 91 mW/m²). (b) The relative intensity of different reaction systems with cold-light irradiation at 10 min.

Fig. S5. Cell viability of HCE cells (a) and LO2 cells (c) incubated with various GCDCO at different concentration (0-53.33 μ g/mL) for 6 h. (b) Cell viability of HCE cells treated with GOx, CDs, CoS_x QDs and GCDCO at concentrations of 0.83, 3.33 and 13.33 μ g/mL. (d) Cell viability of LO2 cells treated with GOx, CDs, CoS_x QDs and GCDCO at concentrations of 0.83, 3.33 and 13.33 μ g/mL in absence of glucose.

Fig. S6. Minimum inhibitory concentration (MIC) for different concentrations of GCDCO nanoagents for 12 h.

Fig. S7. Antibacterial characterization of *E. coli in vitro*. (a) Photographs of survived bacterial colonies of *E. coli* without sunlight and with sunlight treatment in the absence and presence of glucose. Corresponding antibacterial activity of GOx (5 μ g/mL), CDs (5 μ g/mL), CoS_x QDs (10 μ g/mL) and GCDCO (10 μ g/mL) without sunlight and with sunlight treatment in the absence (b) and presence of glucose (c) measured by OD values of bacteria dispersion. Corresponding antibacterial activity of GOx, CDs, CoS_x QDs and GCDCO without sunlight and with sunlight treatment in the absence (d) and presence of glucose (e) measured by bacteria counting.

Fig. S8. Antibacterial characterization of *E. coli in vitro*. (a) Photographs of survived bacterial colonies of *E. coli* without sunlight and with sunlight treatment in the absence and presence of glucose. Corresponding antibacterial activity of GOx (2.5 μ g/mL), CDs (2.5 μ g/mL), CoS_x QDs (5 μ g/mL) and GCDCO (5 μ g/mL) without sunlight and with sunlight treatment in the absence (b) and presence of glucose (c) measured by OD values of bacteria dispersion. Corresponding antibacterial activity of GOx, CDs, CoS_x QDs and GCDCO without sunlight and with sunlight treatment in the absence (d) and presence of glucose (e) measured by bacteria counting.

Commite	Atomic conc. (%)		
Sample –	S 2p	Co 2p	
GCDCO	1.38	0.47	
CoS _x QDs	0.81	0.39	

Table S1	Elemental	ana	lysis
----------	-----------	-----	-------