Supporting Information

Synergistic Heterojunction of SnS₂/SnSSe Nanosheets on GaN for Advanced Selfpowered Photodetectors

Sukhendu Maity and Praveen Kumar*

School of Materials Science, Indian Association for the Cultivation of Science, Kolkata, 700032, India

Contents

Figure S4. (a)X(a) semi-logarithmic I-V curves of the fabricated devices, (b)- (c) Photoresponse recorded with varying intensity under 365 nm illumination, (e)-(f) Bias dependent photoswitching of the device D1 and D2 at the fixed intensity of 1058 μ W/cm²......3

 Table ST1. Parameters to calculate the average photoluminescence lifetime of carriers
 5

 Table ST2. Parameters to calculate the average photoluminescence lifetime of carriers
 5

 Table ST3. Performance comparison of our fabricated device with other reported work
 6

 Table ST4. Population analysis (Mulliken and Hirshfeld) for geometry-optimized SnS2.
 7

 Table ST5. Population analysis for geometry optimized SnSSe.
 7

Figure. S1. (a), (b) Rietveld refinement of SnS_2 and SnSSe bulk powder respectively, (c) XPS survey spectrum of SnS_2 and SnSSe, (d) High resolution XPS of deconvoluted S 2p for SnSSe, (e) High resolution XPS of deconvoluted S 2p for SnS_2 , (e) valence band spectrum with respect to the Fermi level of SnS_2 and SnSSe, (f) AFM images of SnSSe 2d sheet.

Figure. S2. (a) HAADF mapping of SnS_2 nanosheet (b), HAADF mapping of SnSSe nanosheet (c) EDX spectra of SnS_2 and SnSSe nanosheets.

Figure. S3. (a) Absorbance spectra for bulk SnS_2 and SnSSe powder sample, (b), (c) Absorbance spectra for exfoliated SnS_2 and SnSSe in isopropanol solvent, (d) Deconvoluted PL spectrum of exfoliated SnS_2 , (e) PL quenching of SnS_2 in presence of SnSSe, (f) schematic representation of the electron transfer process from SnS_2 to SnSSe.

Figure. S4. (a) semi-logarithmic I-V curves of the fabricated devices, (b)- (c) Photoresponse recorded with varying intensity under 365 nm illumination, (e)-(f) Bias

dependent photo switching of the device D_1 and D_2 at fixed intensity of 1058 μ W/cm².

Figure. S5. (a), (b) Schematics of energy band diagram for D_1 and D_2 device configuration, (c) Simulated electron density distribution of $SnS_2/SnSSe$ heterostructure.

Table ST1. Parameters to calculate the average photoluminescence lifetime of carriers $T = A + B_1 * exp(-i/T_1) + B_2 * exp(i/T_2)$

Sample	Excitation (nm)	Emission (nm)	Average life time (ns)	T ₁ (ns)	T ₂ (ns)	B ₁	B ₂
SnS ₂			2.629	0.914461	6.04562	66.57	33.43
	375	460					
SnS ₂ - SnSSe			1.483	0.900447	5.2463	86.59	13.41

Table ST2. Parameters to calculate the average photoluminescence lifetime of carriers.

 $T = A + B_1 * exp(-i/T_1) + B_2 * exp(i/T_2)$

Device configuration	Excitation (nm)	Emission (nm)	Averag e life time (ns)	T ₁ (ns) 7	Γ ₂ (ns)	B ₁	B ₂
GaN/SnS ₂			6.692	0.52091	7.36049	9.76	90.23
GaN/SnSSe	375	460	6.603	0.29676	7.25718	9.39	90.60
GaN/SnS ₂ /SnSSe			4.931	0.71218	7.37601	36.69	63.31

Device configuration	Wavelengt h (nm)	Bias (volt)	R (A/W)	EQE (%)	D* (Jones)	Refer.
CTS QDs/SnS ₂	320	5	53.88	20,878	3.2×10^{13}	1
SnS ₂ /ITO	405	3	58×10^{-3}	17.9	1.53×10^{10}	2
Cr: Au/SnS ₂ /Cr: Au	365	1	112	3.7×10^4	1.18×10^{11}	3
Ag/SnS ₂ /Ag	365	5	5.5	1868	1.72×10^{13}	4
Si/SnS ₂	405	-2	0.12		9.35×10^{10}	5
SnS₂ ∕Si NW	340	2	100	$3.64 \times 10_{4}$	1.14 × 10 ¹⁴	6
Au/In-SnS ₂ /Au	405	5	153.8	$4.72 \times 10_{4}$	5.81×10^{12}	7
SnS ₂ /PEDOT: PSS	300	-1	182.89	$7.55 \times 10_{4}$	1.44 × 10 ¹²	8
Al/SnS ₂ /CuO/ PEDOT: PSS/ITO	300	-1	1.87	775.41	1.10×10^{11}	9
SnS ₂ /Ag ₂ S	405	2	4.52		3.53×10^{11}	10
SnS ₂ /GaN	265	0	3.52		1.76 × 10 ¹⁴	11
p-Si/SnS ₂	365	0	0.0125		2.85 × 10 ⁷	12
InSe/SnS2/GeSe	355	0	1.87	656	8.39 × 10 ¹²	13
SnO ₂ /In ₂ O ₃ /SnS ₂	555	0	2.9×10^{-3}		5.9 × 107	14
ITO/SnS ₂ /ZnO _{1-x} S _x /Au	365	0	8.28×10^{-3}		5.09 × 10 ¹⁰	15
Ud-GaN/SnS ₂ /SnSSe	365	3	314.96	$10.7 \times 10_{4}$	2.00×10^{14}	This
		0	1.52	519	6.06×10^{13}	work

 Table ST3. Performance comparison of our fabricated device with other reported work.

Table ST4. Population analysis (Mulliken and Hirshfeld) for geometry optimized SnS₂.

Atomic Populations (Mulliken)									Hirshfeld Analysis				
Io	n s	р	d	f To	otal	Charge (e)	Speci	es Ion	Hirshfeld Charge (e)				
1	1.89	4.57	0.00	0.00	6.46	-0.46	===== S	1	-0.14				
2	1.89	4.57	0.00	0.00	6.46	-0.46	S	2	-0.14				
1	1.16	1.92	0.00	0.00	3.08	0.92	Sn	1	0.28				
	Jula Io 1 2 1	Jon s 1 1.89 2 1.89 1 1.16	Joulations (Mull Ion s p 1 1.89 4.57 2 1.89 4.57 1 1.16 1.92	Ion s p d 1 1.89 4.57 0.00 2 1.89 4.57 0.00 1 1.16 1.92 0.00	Joulations (Mulliken) Ion s p d f To 1 1.89 4.57 0.00 0.00 2 1.89 4.57 0.00 0.00 1 1.16 1.92 0.00 0.00	Jon s p d f Total 1 1.89 4.57 0.00 0.00 6.46 2 1.89 4.57 0.00 0.00 6.46 1 1.16 1.92 0.00 0.00 3.08	Jon s p d f Total Charge (e) Ion s p d f Total Charge (e) 1 1.89 4.57 0.00 0.00 6.46 -0.46 2 1.89 4.57 0.00 0.00 6.46 -0.46 1 1.16 1.92 0.00 0.00 3.08 0.92	Jon s p d f Total Charge (e) Specie 1 1.89 4.57 0.00 0.00 6.46 -0.46 S 2 1.89 4.57 0.00 0.00 6.46 -0.46 S 1 1.16 1.92 0.00 0.00 3.08 0.92 Sn	Dulations (Mulliken) Hirshfeld Ana Ion s p d f Total Charge (e) Species Ion 1 1.89 4.57 0.00 0.00 6.46 -0.46 S 1 2 1.89 4.57 0.00 0.00 6.46 -0.46 S 2 1 1.16 1.92 0.00 0.00 3.08 0.92 Sn 1				

Table ST5. Population analysis (Mulliken and Hirshfeld) for geometry optimized SnSSe.

Atomic Populations (Mulliken)									Hirshfeld Analysis				
Species	Ι	on s	р	d	f [Fotal (Charge (e)	Speci	es Ion	Hirshfeld Charge (e)			
S	1	1.90	4.56	0.00	0.00	6.46	-0.46	 S	1	-0.15			
Se	1	1.79	4.45	0.00	0.00	6.24	-0.24	Se	1	-0.11			
Sn	1	1.31	1.99	0.00	0.00	3.30	0.70	Sn	1	0.26			

Atomic P	opul	ations	(Mulli	iken)				Hirshfeld Analysis				
Species	I	on s	р	d	f '	Total	Charge (e)	Speci	es Ion	Hirshfeld Charge (e		
S	1	1.89	4.56	0.00	0.00	6.46	-0.46	 S	1	-0.14		
S	2	1.90	4.56	0.00	0.00	6.46	-0.46	S	2	-0.14		
5	3	1.90	4.55	0.00	0.00	6.45	-0.45	S	3	-0.15		
5	4	1.90	4.56	0.00	0.00	6.45	-0.45	S	4	-0.14		
5	5	1.89	4.57	0.00	0.00	6.47	-0.47	S	5	-0.15		
5	6	1.89	4.57	0.00	0.00	6.47	-0.47	S	6	-0.15		
Se	1	1.75	4.45	0.00	0.00	6.21	-0.21	Se	1	-0.11		
Se	2	1.81	4.45	0.00	0.00	6.26	-0.26	Se	2	-0.11		
Sn	1	1.18	1.91	0.00	0.00	3.09	0.91	Sn	1	0.29		
Sn	2	1.18	1.90	0.00	0.00	3.08	0.92	Sn	2	0.29		
Sn	3	1.31	2.01	0.00	0.00	3.32	0.68	Sn	3	0.25		
'n	4	1.27	2.01	0.00	0.00	3.27	0.73	Sn	4	0.25		
				=====			=======					

 Table ST6. Population analysis for SnS₂/ SnSSe heterostructures.

Reference:

- 1 S. M. Yadav and A. Pandey, *IEEE Trans. Electron Devices*, 2020, **67**, 2008–2015.
- 2 H. Tian, C. Fan, G. Liu, Y. Zhang, M. Wang and E. Li, *J. Mater. Sci.*, 2019, **54**, 2059–2065.
- 3 H. Ying, X. Li, Y. Wu, Y. Yao, J. Xi, W. Su, C. Jin, M. Xu, Z. He and Q. Zhang, *Nanoscale Adv.*, 2019, **1**, 3973–3979.
- 4 S. M. Yadav and A. Pandey, *IEEE Trans. Nanotechnol.*, 2020, **19**, 301–307.
- 5 J. Xu, H. Zhang, Z. Song, Y. Xu, Q. Peng, X. Xiu, Z. Li, C. Li, M. Liu and B. Man, *Appl. Surf. Sci.*, 2020, **506**, 144671.
- 6 S. Das, K. J. Sarkar, B. Pal, H. Mondal, S. Pal, R. Basori and P. Banerji, *J. Appl. Phys.*, 2021, **129**, 053105.
- 7 C. Fan, Z. Liu, S. Yuan, X. Meng, X. An, Y. Jing, C. Sun, Y. Zhang, Z. Zhang, M. Wang, H. Zheng and E. Li, *ACS Appl. Mater. Interfaces*, 2021, **13**, 35889–35896.
- 8 A. K. Dwivedi, R. Tripathi, S. Tripathi, S. Jit and S. Tripathi, *IEEE Electron Device Lett.*, 2022, **43**, 1913–1916.
- 9 A. K. Dwivedi and S. Tripathi, *IEEE Trans. Electron Devices*, 2023, **70**, 2378–2383.
- 10 H. Zhang, H. Li, H. Yu, F. Wang, X. Song, Z. Xu, D. Wei, J. Zhang, Z. Dai, Y. Ren, Y. Ye, X. Ren and J. Yao, *Mater. Lett.*, 2023, **330**, 133037.
- 11 T. Chen, Q. Feng, W. Feng and X. Yang, J. Alloys Compd., 2024, 971, 172657.
- 12 M. Kumar, B. R. Huang, A. Saravanan, H. Sun and S. C. Chen, *Adv. Electron. Mater.*, 2024, **10**, 2400164.
- 13 Y. Yan, J. Li, H. Li, S. Li, Z. Li, W. Gao, Y. Jiang, X. Song, C. Xia and J. Li, *Appl. Phys. Lett.*, 2023, **122**, 043505.
- 14 S. Abbas, D. K. Ban and J. Kim, Sensors Actuators, A Phys., 2019, 293, 215–221.
- 15 J. Jiang, J. Huang, Z. Ye, S. Ruan and Y. J. Zeng, *Adv. Mater. Interfaces*, 2020, 7, 2000882.