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Network Thickness Measurement using White Light Interferometry

Film thickness measurements were carried out using the non-contact optical white light 

interferometry (WLI) technique. This technique illuminates the sample with a low coherence 

light source and using a Mirau lens images the interference fringes arising from different 

heights on the sample. During the measurement the sample is moved in the z-axis relative to 

the lens, which moves the interference fringes. The fringes in WLI have maximum contrast at 

the point of perfect focus, and so the point of perfect focus for each pixel in the image, based 

on the z-scan position at which it occurs. This can then be reconstructed into a 3D surface and 

analysed using the ProfilmOnline software. On order to measure step heights accurately, 

scratches in the films were imaged to see both the top surface of the film and the substrate 

below. Taking a scan of this area and applying a levelling on the substrate enables the use of 

the Histogram function for step height, where the height of each pixel is plotted on a histogram 

and the distribution of surface heights can be observed. For a thin film, this histogram typically 

shows tow peaks, one associated with the substrate and a second associated with the top surface 

of the film. Taking the difference between the position of both peaks gives the film thickness. 
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Figure S1: 3D representation of the surface of a nanosheet network, scratched to the substrate 
reconstructed from white light interferometry data. Below the histogram of pixel height is 
shown, in which two distinct distributions of heights are observed, one represents the substrate 
and the other the top surface of the network. 



Cyclic Strain Testing

Cyclic strain testing of the piezoresistors was conducted to investigate the distribution of gauge 
factors for each of the devices, as will be outlined in later sections. But in order to extract this 
data, each device was cycled using a triangular sawtooth strain profile, from 0% to 0.5% strain. 
At a strain rate of 0.2 %/s for 200 cycles. The electronic response of each device is shown 
below, for clarity, each profile is normalised to the initial resistance of the device.  

Figure S2: Piezoresistive response to cycling for 200 cycles at 0.5% strain, 0.2%/s using a 
triangular sawtooth profile for a device from each size fraction. The resistances are normalised 
to the zero-strain resistance measured before the first straining cycle.

Gauge Factor Distribution from Cyclic Data

In order to extract gauge factor values from cycling data in the linear regime, the resistance vs. 

time graph is plotted in OriginPro 2022b. The region of interest is chosen using the ‘data 

selector’ function. In this study that was the region after any initial decay in resistance 

associated with conditioning. Once the region was selected, it was analysed to identify peaks 

using the ‘Peak Analyzer’, with the goal defined to be ‘find peaks’. To find the maximum and 

minimum point of each cycle, the baseline was taken to be the mean of the data set. Peaks were 

identified in both directions using a local maximum method with at least 5 local points. This 

reduced the likelihood of finding false peaks as a result of noise in the electrical signal. 

Additionally, peaks were filtered by ‘height %’ with a threshold height of 20%. Once 

completed, this operation outputs a list of resistance values and the timestamp associated with 



each. As a sanity check, the difference between time stamps should be equal to half the cycling 

period. The gauge factor can then be calculated by using the following equation. 
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Where the subscript n describes which cycle the value is associated with,  is the maximum 

strain applied, and 0 signifies that the measurement is at the unstrained position. From this 

analysis, a distribution of gauge factor values can be extracted for each device. This enables a 

method of testing the consistency of individual samples, along with minimising the potential 

error in measured gauge factor due to signal variations in the electrical response from a single 

measurement, which can be significant especially in the case of low gauge factor samples. 

Nanosheet Thickness

Figure S3: Representative AFM images of flakes from across the range of size selected 
fractions. A) 0.5 to 1 kRPM, B) 1 to 1.5 kRPM, C) 2 to 3 kRPM, D) 3 to 4 kRPM.



Figure S4: Measured apparent thickness distribution histograms for nanosheets measured using 
AFM from all six size fractions. A) 0.5 to 1 kRPM, B) 1 to 1.5 kRPM, C) 1.5 to 2 kRPM, D) 2 
to 3 kRPM, E) 3 to 4 kRPM, F) 4 to 6 kRPM.

Figure S5: Converted nanosheet thickness distribution histograms, converted from the 
measured thicknesses (Figure S4) for all six size fractions. A) 0.5 to 1 kRPM, B) 1 to 1.5 
kRPM, C) 1.5 to 2 kRPM, D) 2 to 3 kRPM, E) 3 to 4 kRPM, F) 4 to 6 kRPM.



Table S1: Nanosheet sizes determined from AFM for each size fraction.

Centrifugation Trapping 
Speeds

LNS (µm) Thickness before 
correction (nm)

TNS (nm)

0.5 to 1 kRPM 1.50 54.6 19.7
1 to 1.5 kRPM 1.30 32.4 11.6
1.5 to 2 kRPM 0.83 27.0 9.6
2 to 3 kRPM 0.76 17.9 6.2
3 to 4 kRPM 0.50 14.4 4.9
4 to 6 kRPM 0.45 9.8 3.2

Model Derivation

For a nanosheet network (t>tx)
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For graphene, the carrier density, nNS is large so the above expression can be simplified to 
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The gauge factor of a naetwork can be written as
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We see that the strain derivitive of network strain is a key parameter, and so we take this 
derivitive of the above expression for network resistivity.
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Substituting this derivative into the expression for network gauge factor, yields.
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Further simplifyng we are left with a three term expression for network gauge factor.
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Dividing the third term through by , and modifying the second term using the relationNS
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For fitting, the  term can be extracted from the thickness dependent resistivity fit.2 J
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