Supplementary Information

Thermodynamic Phase Control of Cu-Sn Alloy Electrocatalysts for Selective CO₂ Reduction

Soohyun Go^{1,†}, Woosuck Kwon^{1,†}, Deokgi Hong^{2,†}, Taemin Lee¹, Sang-Ho Oh², Daewon Bae¹, Jeong-Heon Kim¹, Seolha Lim¹, Young-Chang Joo², and Dae-Hyun Nam^{1,3,*}

¹Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea ²Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea ³Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea

[†]These authors contributed equally to this work.

*Corresponding author

Prof. Dae-Hyun Nam

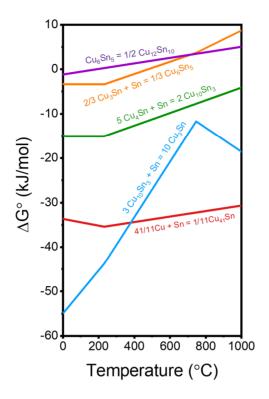
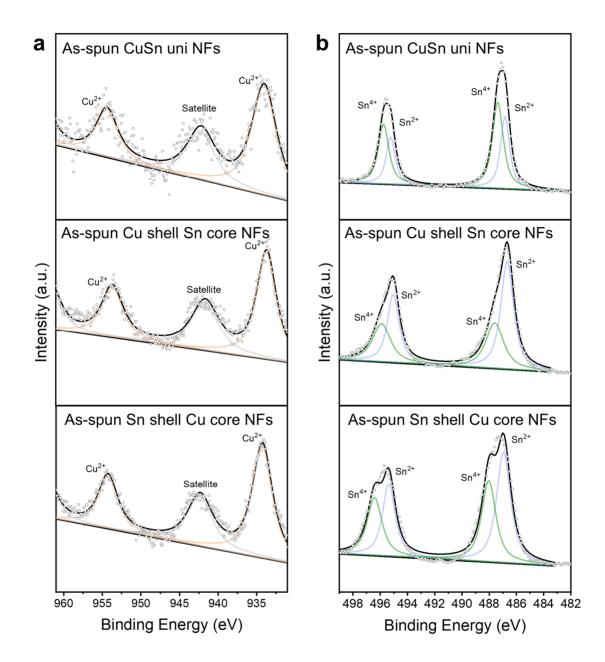
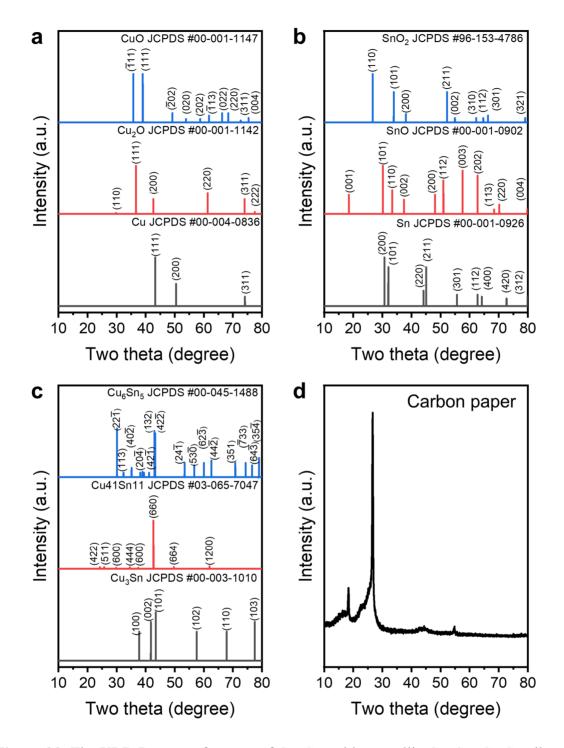
Department of Energy Science & Engineering

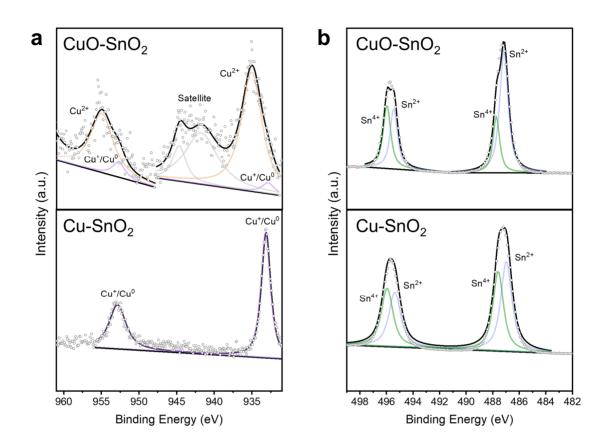
Daegu Gyeongbuk Institute of Science & Technology (DGIST)

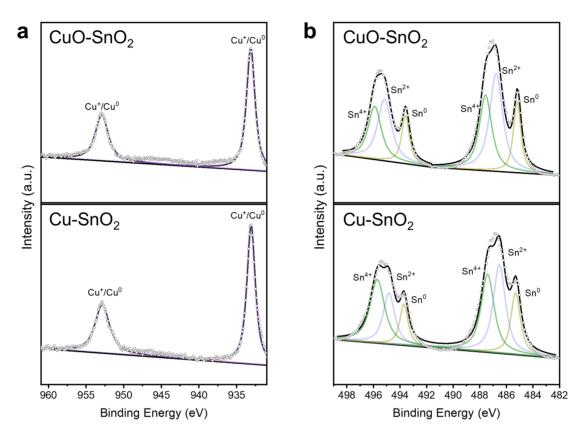
Department of Materials Science and Engineering

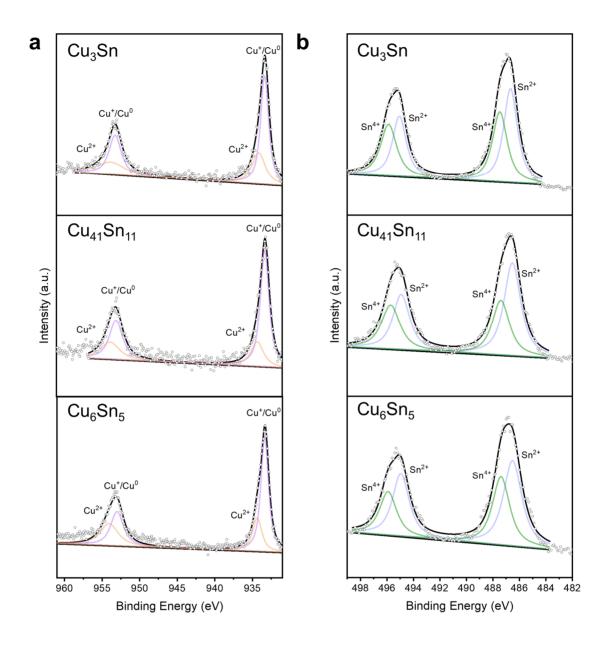
Korea University

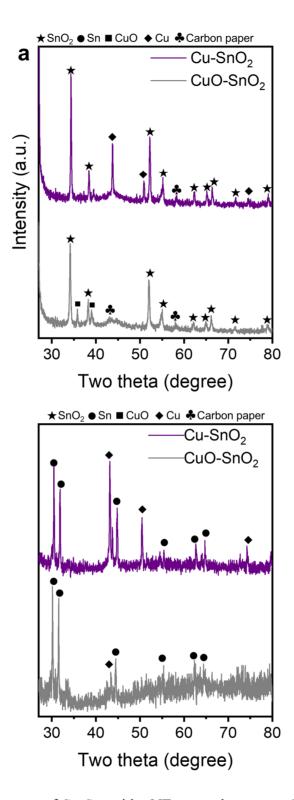
E-mail: dnam@korea.ac.kr

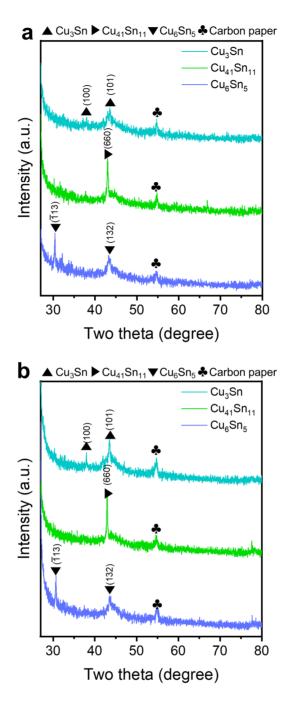




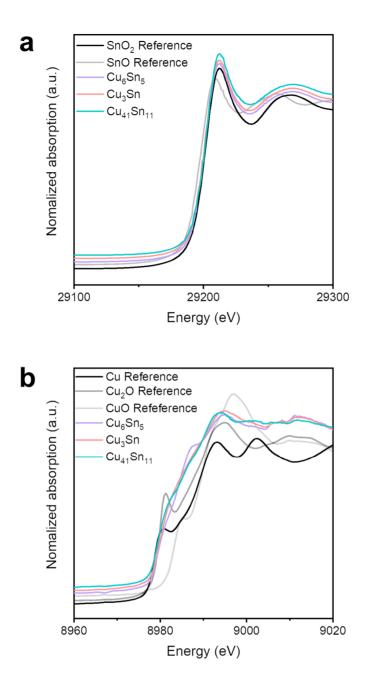

Figure S1. The standard Gibbs free energy diagram of Cu-Sn alloys.


Figure S2. The XPS spectrums of as-spun CuSn uniaxial NFs, Cu shell Sn core NFs, and Sn shell Cu core NFs in terms of (a) Cu 2p and (b) Sn 3d to investigate the chemical state of as-spun NFs before the calcination. The Cu 2p peaks were deconvoluted as Cu^+/Cu^0 (~933.4 eV and 953.5 eV) and Cu^{2+} (~934.5 eV and ~956 eV). The Sn 3d peaks were deconvoluted as Sn⁰ (~485.5 eV and ~493.7 eV), Sn²⁺ (~487 eV and ~495.3 eV), and Sn⁴⁺ (~487.9 eV and ~496 eV).¹


Figure S3. The XRD Pattern references of Cu, Sn oxide, metallic Cu, Sn, Cu-Sn alloys, and carbon paper. (a) The references of Cu, Cu₂O, and CuO. (b) The references of Sn, SnO, SnO₂. (c) The references of Cu₃Sn, Cu₄₁Sn₁₁, and Cu₆Sn₅. (d) The reference of carbon paper.


Figure S4. The XPS spectrum of Cu-Sn oxides NFs before CO₂RR to identify the oxidation state in terms of (a) Cu 2p and (b) Sn 3d. The Cu 2p peaks were deconvoluted as Cu^+/Cu^0 (~933.4 eV and 953.5 eV) and Cu^{2+} (~934.5 eV and ~956 eV). Sn⁰ (~485.5 eV and ~493.7 eV), Sn²⁺ (~487 eV and ~495.3 eV), and Sn⁴⁺ (~487.9 eV and ~496 eV).¹ Ar etching was conducted to eliminate the native oxide layer before analysis.


Figure S5. The XPS spectrum of Cu-Sn oxides NFs after CO₂RR to identify the oxidation state in terms of (a) Cu 2p and (b) Sn 3d. The Cu 2p peaks were deconvoluted as Cu⁺/Cu⁰ (~933.4 eV and 953.5 eV) and Cu²⁺ (~934.5 eV and ~956 eV). Sn⁰ (~485.5 eV and ~493.7 eV), Sn²⁺ (~487 eV and ~495.3 eV), and Sn⁴⁺ (~487.9 eV and ~496 eV).¹ Ar etching was conducted to eliminate the native oxide layer before analysis.


Figure S6. The XPS spectrum of Cu-Sn alloys/CNFs after CO₂RR to identify the oxidation state in terms of (a) Cu 2p and (b) Sn 3d. The Cu 2p peaks were deconvoluted as Cu⁺/Cu⁰ (~933.4 eV and 953.5 eV) and Cu²⁺ (~934.5 eV and ~956 eV). Sn⁰ (~485.5 eV and ~493.7 eV), Sn²⁺ (~487 eV and ~495.3 eV), and Sn⁴⁺ (~487.9 eV and ~496 eV).¹ Ar etching was conducted to eliminate the native oxide layer before analysis.

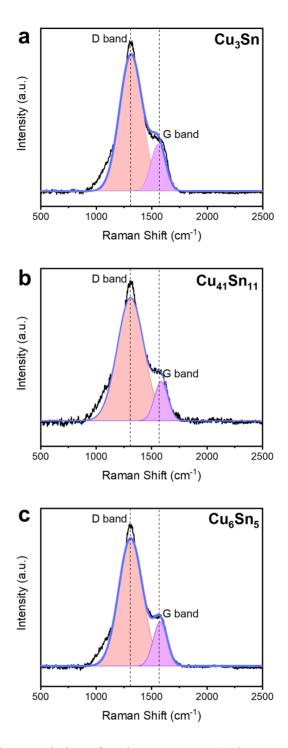

Figure S7. The XRD patterns of Cu-Sn oxides NFs on carbon paper GDL. (a) Before CO₂RR. (b) After CO₂RR.

Figure S8. The XRD patterns of Cu-Sn alloys/CNFs on carbon paper GDL. (a) Before CO₂RR. (b) After CO₂RR.

Figure S9. (a) XANES spectra at Sn-K edge for $Cu_3Sn/CNFs$, $Cu_{41}Sn_{11}/CNFs$, $Cu_6Sn_5/CNFs$, and reference SnO, SnO₂. (b) XANES spectra at Cu-K edge for $Cu_3Sn/CNFs$, $Cu_{41}Sn_{11}/CNFs$, $Cu_6Sn_5/CNFs$, and reference Cu, CuO, Cu₂O.

Figure S10. Bonding characteristics of carbon support. Carbon crystallinity of Cu-Sn alloy embedded nanofibers was investigated by Raman spectroscopy (a) Cu_3Sn , (b) $Cu_{41}Sn_{11}$, (c) Cu_6Sn_5 . The G-band represents the planar configuration sp² bonded carbon (rings and chain), and the D-band is the breathing mode of sp² atoms (rings) directly proportional to the level of defects in the sample. Carbon crystallinity was calculated by peak intensity ratio (I_D/I_G).

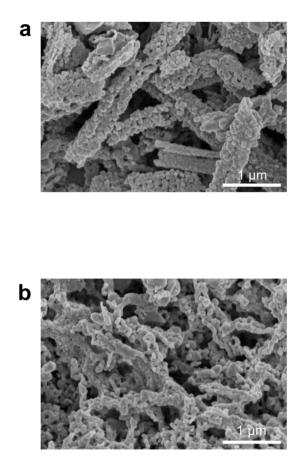
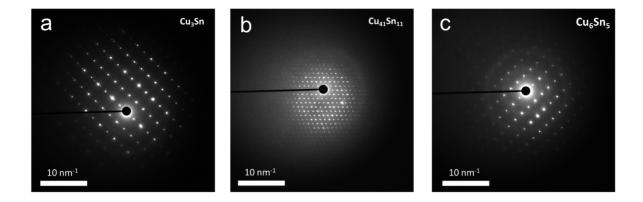
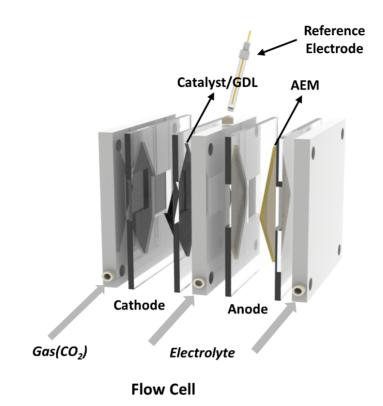



Figure S11. The SEM images of Cu-Sn oxides NFs. (a)CuO-SnO₂ NFs (b) Cu-SnO₂ NFs.

Figure S12. TEM SAED analysis (scale bar 10 nm⁻¹) results of (a) Cu₃Sn, (b) Cu₄₁Sn₁₁, and (c) Cu₆Sn₅ in Cu-Sn alloy/CNFs.



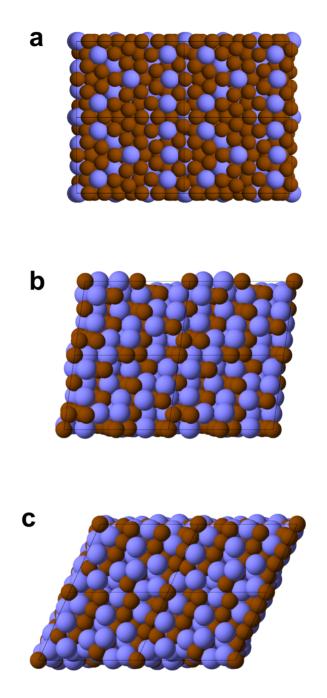


Figure S13. Schematic of flow cell composed of cathode for CO_2RR , anode, reference electrode, and anion exchange membrane

Figure S14. The CO₂RR stability of Cu₄₁Sn₁₁/CNFs in flow cell with 1 M KOH electrolyte at a total current of 300 mA/cm². The gray, pink, blue, and orange mark indicate the H₂, CO, CH₄, and C₂H₄ respectively. H₂ FE gradually increased over 30% because of low hydrophobicity of carbon paper.

Figure S15. Atomic structure of 2×2 supercell for (a) Cu₄₁Sn₁₁ (660), (b) Cu₆Sn₅ (132), and (c) Cu₆Sn₅ ($\overline{1}13$) surface. Brown and blue spheres represent Cu and Sn atoms, respectively.

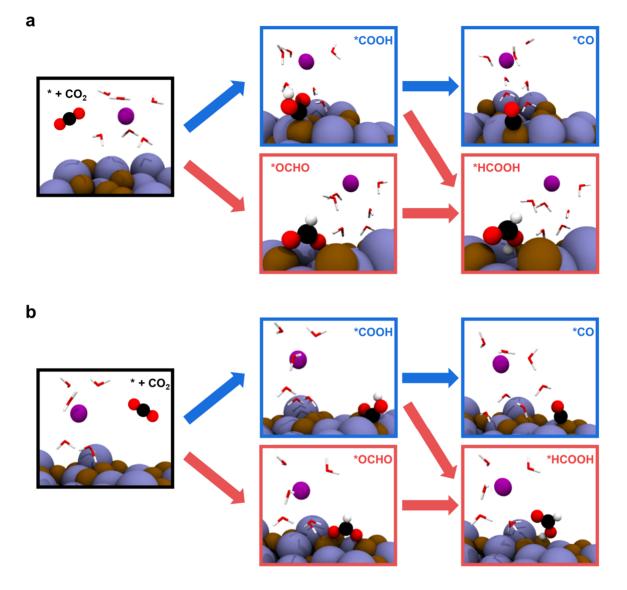


Figure S16. Atomic structure change in CO₂ reduction to *CO and *HCOOH on (a) Cu₆Sn₅ (132) and (b) Cu₆Sn₅ ($\overline{1}13$) surface. Brown, blue, black, red, white, and purple spheres represent Cu, Sn, C, O, H, and K atoms, respectively. H₂O molecules are shown as lines for brevity.

Table S1. The Cu and Sn composition of Cu-Sn alloys/CNFs acquired by inductively coupledplasma optical emission spectroscopy (ICP-OES) analysis.

Sample	Sn (ppm)	Cu (ppm)	Sn (mmol)	Cu (mmol)	Cu Sn ratio
Cu ₃ Sn CNFs	1.166	1.248	9.822	19.63	Cu _{1.999} Sn (Cu ₂ Sn)
Cu ₆ Sn ₅ CNFs	1.851	1.395	15.59	21.95	Cu _{1.408} Sn (Cu ₆ Sn ₅)
Cu ₄₁ Sn ₁₁ CNFs	0.469	1.07	3.951	16.84	Cu _{4.262} Sn (Cu _{4.3} Sn)

Plane	d-space of model (nm)	d-space from HRTEM (nm)
Cu ₄₁ S ₁₁ (660)	0.212	0.210
Cu ₆ Sn ₅ (132)	0.211	0.210
Cu ₆ Sn ₅ (-113)	0.245	0.297

Table S2. Distance between lattice plane of $Cu_{41}Sn_{11}$ (660), Cu_6Sn_5 (132), and Cu_6Sn_5 (-113) plane calculated from the theoretical model for DFT calculation and HRTEM analysis.

Products	Value (%)	-0.54 V (vs RHE)	-0.70 V (vs RHE)	-0.81 V (vs RHE)	-0.95 V (vs RHE)	-0.99 V (vs RHE)
H ₂	Average FE	8.26	4.63	5.97	5.94	8.83
	Standard deviation	0.76	0.36	0.35	0.47	0.26
СО	Average FE	26.9	16.5	29.6	29.2	26.9
	Standard deviation	2.3	4.0	1.4	2.5	7.8
HCOO [.]	Average FE	59.7	74.3	56.6	53.7	65.3
	Standard deviation	2.5	8.0	1.8	0.31	4.1

Table S3. The average FE and standard deviation for each CO₂RR product about CuO-SnO₂ NFs. These values were computed from three independent samples at each applied potential.

Products	Value (%)	-0.58 V (vs RHE)	-0.64 V (vs RHE)	-0.75 V (vs RHE)	-0.79 V (vs RHE)	-0.89 V (vs RHE)
H_2	Average FE	4.95	5.66	6.84	6.58	7.08
	Standard deviation	2.7	1.3	0.71	0.74	2.8
СО	Average FE	24.9	29.4	35.3	56.3	59.1
	Standard deviation	7.4	5.5	2.1	7.8	1.5
HCOO.	Average FE	66.9	60.0	54.8	40.5	37.3
	Standard deviation	4.9	3.5	2.7	6.0	1.9

Table S4. The average FE and standard deviation for each CO₂RR product about Cu-SnO₂ NFs. These values were computed from three independent samples at each applied potential.

Products	Value (%)	-0.71 V (vs RHE)	-0.84 V (vs RHE)	-1.01 V (vs RHE)	-1.14 V (vs RHE)	-1.18 V (vs RHE)	-1.33 V (vs RHE)	-1.45 V (vs RHE)	-1.50 V (vs RHE)
H ₂	Average FE	11.5	12.6	11.5	12	11.4	20.0	17.2	18.9
	Standard deviation	0.28	0.092	0.16	0.47	0.79	0.83	2.0	0.068
	Average FE	63.7	52.1	50.5	41.5	34.9	26.9	19.4	17.6
СО	Standard deviation	1.2	0.64	0.93	3.1	3.1	0.54	4.0	2.1
CII	Average FE	6.57	13.7	14.6	18.4	21.3	33.1	31.3	34.7
CH ₄	Standard deviation	1.6	0.76	1.3	1.6	1.8	1.7	4.5	1.6
C ₂ H ₄	Average FE	7.22	9.64	10.9	12.9	15.3	6.10	12.9	10.9
C2f14	Standard deviation	0.60	0.82	1.3	0.49	0.61	0.37	1.7	1.3
HCOO-	Average FE	11.4	8.88	6.15	4.48	8.05	5.19	3.80	4.88
нсоо	Standard deviation	1.1	0.62	1.1	0.057	0.086	0.71	0.52	2.3
C ₂ H ₅ OH	Average FE	3.66	6.01	8.72	9.82	5.07	8.02	10.1	9.24
	Standard deviation	2.0	1.4	0.59	0.96	1.1	0.043	1.8	0.80
	Average FE	0.966	2.19	3.89	4.59	2.92	5.60	5.21	5.00
CH ₃ COO ⁻	Standard deviation	0.48	0.47	0.14	1.0	0.30	0.19	1.2	0.23

Table S5. The average FE and standard deviation for each CO_2RR product about $Cu_3Sn/CNFs$.These values were computed from three independent samples at each applied potential.

Table S6. The average FE and standard deviation for each CO_2RR product about $Cu_{41}Sn_{11}/CNFs$. These values were computed from three independent samples at each applied potential.

Products	Value (%)	-0.62 V (vs RHE)	-0.75 V (vs RHE)	-0.83 V (vs RHE)	-0.97 V (vs RHE)	-1.08 V (vs RHE)	-1.24 V (vs RHE)	-1.36 V (vs RHE)	-1.40 V (vs RHE)
H ₂	Average FE	23.0	21.2	20.0	19.8	16.9	22.6	24.2	26.1
	Standard deviation	4.2	1.4	2.2	1.1	1.5	3.7	2.5	4.5
СО	Average FE	51.7	45.2	35.9	33.9	32.2	30.6	27.3	28.4
	Standard deviation	3.5	1.7	3.5	0.77	4.5	3.4	1.1	2.0
	Average FE	13.3	23.9	31.6	34.0	34.2	36.9	39.1	34.4
CH ₄	Standard deviation	2.9	1.3	2.2	1.4	1.9	3.6	1.1	2.3
C ₂ H ₄	Average FE	3.54	5.20	5.80	6.83	7.81	3.20	5.21	4.89
C2H4	Standard deviation	0.38	0.73	0.21	0.22	0.96	1.6	2.5	2.8
HCOO ⁻	Average FE	15.0	10.6	7.73	5.97	6.35	6.32	6.66	4.56
нсоо	Standard deviation	0.65	0.33	0.88	1.7	1.5	6.3	1.7	0.14
CHOU	Average FE	2.57	3.12	3.13	4.02	5.91	4.47	3.86	6.30
C ₂ H ₅ OH	Standard deviation	2.0	1.4	0.59	0.96	1.1	0.043	1.8	0.8
CIL COO-	Average FE	1.72	2.84	2.87	2.73	4.52	1.70	2.68	4.03
CH ₃ COO ⁻	Standard deviation	0.73	0.63	0.13	2.2	0.28	2.1	1.1	0.27

Products	Value (%)	-1.03 V (vs RHE)	-1.2 V (vs RHE)	-1.31 V (vs RHE)	-1.55 V (vs RHE)	-1.78 V (vs RHE)	-2.04 V (vs RHE)	-2.31 V (vs RHE)	-2.35 V (vs RHE)
H_2	Average FE	11.4	14.2	16.7	20.0	16.1	26.6	20.2	60.9
	Standard deviation	1.5	3.1	2.0	2.9	1.4	3.8	2.3	5.4
СО	Average FE	43.0	41.3	35.6	22.0	30.8	27.4	19.3	14.5
	Standard deviation	5.2	1.4	2.3	4.3	3.9	4.2	2.1	1.6
HCOO [.]	Average FE	47.1	41.7	42.4	41.7	45.6	43.5	58.6	22.0
	Standard deviation	3.8	1.5	1.1	2.0	3.3	1.6	1.4	1.4

Table S7. The average FE and standard deviation for each CO_2RR product about $Cu_6Sn_5/CNFs$.These values were computed from three independent samples at each applied potential.

Reference

A. L. S. Eh, J. Chen, S. H. Yu, G. Thangavel, X. Zhou, G. Cai, S. Li, D. H. Chua and P. S. Lee, *Advanced Science*, 2020, 7, 1903198.