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Fig. S2. Block diagram comparison of a conventional ex-sensor visual system with a von Neumann processor, ex-
sensor visual system based on RBM, and the proposed in-sensor visual system based on RBM.

The block diagram in Fig. S2 compares the structure of a conventional ex-sensor visual system with conventional 
von Neumann architecture, an ex-sensor visual system with RBM, and a proposed in-sensor visual system with RBM. 
In the conventional ex-sensor visual system, a photodetector array receives light, and an analog-to-digital converter 
(ADC) converts the analog signal from the photodetector array into the digital signal.1,2 This information is then 
stored in memory and provided to a processor for data processing. However, significant bottlenecks present as the 
massive data moves from the photodetector array to the memory through the ADC or the memory to the 
processor.3–5  Using the RBM eliminates bottlenecks between the memory and processor. Significantly, the RBM 
enables faster convergence and lower computational cost than other neural networks, making it desirable in 
energy-efficient visual systems.6 However, the bottleneck still exists at the ADC in the ex-sensor visual system with 
RBM because there is an additional random number generator, such as ring oscillators, to stochastically update the 
neuron states after receiving digital signals from the ADC.7 Therefore, an in-sensor visual system based on RBM 
significantly reduces the physical and computational distances between the photodetector array and the input 
neuron of RBM by coupling each element using a stochastic photo-responsive neuron. Consequently, prominently 
reduced data transmission ensures low latency and low power consumption.
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Fig. S3. (a) Arrhenius plot of the hopping conduction at low fields of the TIT device at light OFF state. (b) ln(J)-E 
characteristics of hopping conduction of the TIT device at light OFF state. (c) Arrhenius plot of the hopping 
conduction at low fields of the TIT device at light ON state. (d) ln(J)-E characteristics of hopping conduction of the 
TIT device at light ON state.
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Fig. S4. (a) SET process of the TIT optoelectronic memristor. The black and red curves represent the I-V curves 
before and after the SET operation. (b) Photo-response of the device before the SET process. (c) Electrical pulse test 
at various conditions. Blue and red circles indicate the output current at light OFF and ON conditions, respectively. 
A 2 V, 4 V, and 5 V pulse was applied in sequential order.

(a)

(b)

Fig. S5. (a) Cross-sectional transmission electron microscopy (TEM) image and (b) electrical dispersive spectroscopy 
(EDS) results.
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Fig. S6. (a) I-V characteristics and (b) statistical distribution of Vth of the AHP device with an HfO2 thickness of 3 nm. 
Schematic illustrations of the threshold-switching mechanism of the AHP devices with (c) 3 nm and (d) 8 nm HfO2 
layers.
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Fig. S7. Switching probability of photo-responsive neurons observed at light intensities of 0.49 mW/cm², 1.48 
mW/cm², and 2.96 mW/cm² before and after the closed-loop pulse switching (CLPS) endurance test. The error bar 
shows the variability in 10 measurements.

In this work, the pulse switching endurance measurement was conducted by the CLPS method with a custom-made 

board, as detailed in previous work.8 This method involves applying incremental pulses until the desired resistance 

is achieved. Specifically, during the SET process, positive incremental pulses were applied from 0.05 V with a step 

size of 0.05 V until the device reached the LRS resistance, which was set as 2 MΩ for this work. After each pulse, 

the resistance value was measured with a read pulse of 0.2 V. Once the device reached the LRS resistance, negative 

pulses of increasing magnitude (in absolute value) were immediately applied, starting from -0.2 V with a step size 

of -0.05 V, to initiate the RESET process until the target HRS resistance of 50 MΩ was attained. It should be noted 

that the AHP threshold-switching memristor exhibited very high resistance, which exceeded the measurement 

system's resolution limit. Consequently, the CLPS measurement resulted in the HRS region containing numerous 

data points that resembled a uniform resistance profile in the HRS region.
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Fig. S8. Detailed learning process of a restricted Boltzmann machine (RBM). v(0) represents the state of visible 
neurons determined by light, and ℎ(0) denotes the state of hidden neurons determined based on a given switching 
probability. v(k) and h(k) represent the states determined after k iterations of sampling for the visible layer neurons 
and hidden layer neurons, respectively. The term p(h∕v) defines the probability of hidden neurons becoming active 
given the state of visible neurons, expressed in a sigmoid form. θ represents the set of parameters that are updated 
through the contrastive divergence (CD) algorithm. 

The training process of an RBM involves updating the weights using the contrastive divergence (CD) algorithm 

followed by Gibbs sampling. The CD algorithm is divided into two main phases: the positive phase and the negative 

phase. In the positive phase, the goal is to capture the characteristics of the input data based on the actual data 

distribution. During this phase, the input data is presented to the visible layer of the RBM, from which the activation 

probabilities of the hidden layer are calculated to derive the expectation concerning the input data. The negative 

phase then generates new data samples through Gibbs sampling, based on the current weights, to learn about the 

distribution of the model. This phase calculates the expectation for the actual data. 

The weight update is performed by calculating the difference between the expectation of the data (from the 

positive phase) and the model's expectation (from the negative phase), multiplying this difference by the learning 

rate, and adding it to the previous weights. By iteratively adjusting the weights through this process, the hidden 

layer of the RBM learns to capture hidden features that can accurately reconstruct the input data. This process 

allows the RBM to approximate the complex probability distribution of the input data more effectively over time. 

In Gibbs sampling, the activation probabilities of the hidden neurons are determined based on the inputs from 

the visible layer. Following this, the activation probabilities of the input neurons in the visible layer are calculated 

based on the activation states of the hidden neurons, resulting in a reconstructed output. This process includes 

calculating the sum of the weighted inputs and the bias term for each neuron. Specifically, the neurons 

probabilistically determine their state of either 0 or 1 using the following equations.
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In this equation,  represents the state of the input neurons,  represents the state of the hidden neurons, and  𝑣 ℎ 𝑤

indicates the weights between the two layers. Also,  and  represent the state of the -th input neuron and the 𝑣𝑖 ℎ𝑗 𝑖

-th hidden neuron, respectively.𝑗

Using the features learned by the RBM, a fully connected neural network finely tunes the weights thro

ugh backpropagation for classification. This approach leverages the efficiency of the RBM in extracting fe

atures, allowing for precise classification. 
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Fig. S9. The recognition rate of MNIST handwritten digits depends on whether the input neurons in the visible layer 
and the hidden neurons in the hidden layer are stochastic or deterministic. 
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Fig. S10. (a) Schematics of RBM network, deep neural network with hidden layer, and deep neural network without 
hidden layer. (b) Recognition rate of MNIST handwritten digits according to the epochs in each case. 
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(a) (b)

Fig. S11. Confusion matrix of Yale face image recognition using (a) the stochastic neurons and (b) the deterministic 
neurons.

(a) (b)

Fig. S12. Image reconstruction of (a) left-side light-shone face images and (b) center light-shone face images using 
the in-sensor RBM.
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Table S1. Comparison of the MNIST recognition task accuracy using the restricted Boltzmann machine (RBM) 
between this study and previously reported research.

Reference Accuracy 
(%)

Device 
(Neuron)

Network size Image 
reconstruction

Light responsive 
system

Software 91.7 - 784 ⅹ100ⅹ10 - -

Mao et al., Adv. 
Electron. Mater., 
2022, 8, 2100918.9

91.2 Ag/IGZO/ITO 784 ⅹ500ⅹ10 No No

Heo et al., Adv. Sci., 
2024, 2405768.10

90.63 W/ZnTe/W 784 ⅹ500ⅹ10 No No

Li et al., Nano Lett., 
2024, 24, 5420–
5428.11

93.0 SOT - MTJ 25 ⅹ2 Yes No

This study 90.9 Ag/HfO2/Pt 784 ⅹ100ⅹ10 Yes Yes
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