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Figure S1. The variations of (a) temperature, (b) energy and (c) Co-N bond versus the AIMD 
simulation time for 1500fs of CoN4 under 298.15 K. The variations of (d) temperature, (e) energy 
and (f) Fe-N bond versus the AIMD simulation time for 1500fs of FeN4 under 298.15 K. Ab initio 
molecular dynamics calculations at the B97-3c level [1] using ORCA program [2-4] structural 
relaxation was performed at 298.15K



Figure S2. Optimized structure of Sub@FeN4. (a) FeN4 , (b) B@FeN4 , (c) N@FeN4 , (d) S@FeN4 , 
(e) O@FeN4 , (f) CH3@FeN4 , (g) OCH3@FeN4 , (h) NO2@FeN4 , (i) SO4@FeN4 , (j) NH2@FeN4.



Figure S3. Optimized structure of Sub@CoN4. (a) CoN4 , (b) B@CoN4 , (c) N@CoN4 , (d) 
S@CoN4 , (e) O@CoN4 , (f) CH3@CoN4 , (g) OCH3@CoN4 , (h) NO2@CoN4 , (i) SO4@CoN4 , (j) 
NH2@CoN4.



Figure S4. Optimized structure of Sub@NiN4. (a) NiN4 , (b) B@NiN4 , (c) N@NiN4 , (d) S@NiN4 , 
(e) O@NiN4 , (f) CH3@NiN4 , (g) OCH3@NiN4 , (h) NO2@NiN4 , (i) SO4@NiN4 , (j) NH2@NiN4.



Figure S5. Optimized structure of Sub@CuN4. (a) CuN4 , (b) B@CuN4 , (c) N@CuN4 , (d) 
S@CuN4 , (e) O@CuN4 , (f) CH3@CuN4 , (g) OCH3@CuN4 , (h) NO2@CuN4 , (i) SO4@CuN4 , (j) 
NH2@CuN4.



Figure S6 The formation energy of Sub@MN4. (a) Sub@FeN4; (b) Sub@CoN4; (c) Sub@NiN4; (d) 
Sub@CuN4. The formula for calculating the formation energy is as follows: Ef = ESub@MN4 - ESub@N4 
- EM. In theoretical calculations, this indicator is widely used to assess stability, where ESub@MN4, 
Esub@N4 and EM represent the electronic energies of Sub@MN4, Sub@N4 and M, respectively.



Figure S7. Free energy diagrams for ORR/OER on (a) Sub@FeN4, (b) Sub@CoN4, (c) SubNiN4, 
and (d) Sub@CuN4 catalysts
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Figure S8. Volcano plots for ORR on Sub@FeN4, Sub@CoN4, SubNiN4, and Sub@CuN4.



Figure S9. Free energy diagrams for HER on (a) Sub@FeN4, (b) Sub@CoN4, (c) SubNiN4, and (d) 
Sub@CuN4 catalysts; Volcano plots for HER on (e) Sub@FeN4, (f) Sub@CoN4, (g) SubNiN4, and 
(h) Sub@CuN4 catalysts.



Figure S10. Variation of metal center charge in (a) Sub@FeN4, (b) Sub@CoN4, (c) Sub@NiN4, 
and (d) Sub@CuN4 catalysts with different edge-doping groups.



Figure S11. Charge distribution map of Sub@FeN4 catalyst.



Figure S12. Charge distribution map of Sub@FeN4 catalyst after *OOH adsorption.



Figure S13. Charge distribution map of Sub@FeN4 catalyst after *H adsorption.



Figure S14. Charge distribution map of Sub@CoN4 catalyst.



Figure S15. Charge distribution map of Sub@CoN4 catalyst after *OOH adsorption.



Figure S16. Charge distribution map of Sub@CoN4 catalyst after *H adsorption.



Figure S17. Charge distribution map of Sub@NiN4 catalyst.



Figure S18. Charge distribution map of Sub@NiN4 catalyst with *OOH adsorption.



Figure S19. Charge distribution map of Sub@NiN4 catalyst with *H adsorption.



Figure S20. Charge distribution map of Sub@CuN4 catalyst.



Figure S21. Charge distribution map of Sub@CuN4 catalyst with *OOH adsorption.



Figure S22. Charge distribution map of Sub@CuN4 catalyst with *H adsorption.



Figure S23. Structure-activity relationships in MN4. Correlation of *OOH adsorption free energy 
with (a) M-O bond length, (b) metal center charge, (c) d-band center, and (d) fundamental gap; 
correlation of *H adsorption free energy with (e) M-H bond length, (f) metal center charge, (g) d-
band center, and (h) fundamental gap.



Figure S24. Structure-activity relationships in Sub@MN4.  Correlation of *OOH adsorption free 
energy with (a) M-O bond length, (b) metal center charge, (c) d-band center, and (d) fundamental 
gap; correlation of *H adsorption free energy with (e) M-H bond length, (f) metal center charge, (g) 
d-band center, and (h) fundamental gap.



Figure S25. Structure-activity relationships in Sub@MN4 considering the implicit solvent model.  
Correlation of *OOH adsorption free energy with (a) M-O bond length, (b) metal center charge, (c) 
d-band center, and (d) fundamental gap; correlation of *H adsorption free energy with (e) M-H bond 
length, (f) metal center charge, (g) d-band center, and (h) fundamental gap.



Figure S26. d-band center of Fe in Sub@FeN4 catalyst.



Figure S27. d-band center of Co in Sub@CoN4 catalyst.



Figure S28. d-band center of Ni in Sub@NiN4 catalyst.



Figure S29. d-band center of Cu in Sub@CuN4 catalyst.



Figure S30. Comparison of (a) *OOH adsorption free energy and (c) *H adsorption free energy 
calculated from the Random Forest Regression (RFR) model with DFT (Density Functional 
Theory) computed values. Importance analysis of each feature for (b) *OOH adsorption free 
energy and (d) *H adsorption free energy.



Figure S31. Comparison of (a) *OOH adsorption free energy and (c) *H adsorption free energy 
calculated from the XGBoost Regression (XGBR) model with DFT (Density Functional Theory) 
computed values. Importance analysis of each feature for (b) *OOH adsorption free energy and (d) 
*H adsorption free energy.



Figure S32. Comparison of (a) *OOH adsorption free energy and (b) *H adsorption free energy 
calculated from the LINER model with DFT (Density Functional Theory) computed values.



Figure S33. Comparison of (a) *OOH adsorption free energy and (b) *H adsorption free energy 
calculated from the KNN (K-Nearest Neighbors) model with DFT (Density Functional Theory) 
computed values.



Figure S34. Comparison of (a) *OOH adsorption free energy and (b) *H adsorption free energy 
calculated from the SVR (Support Vector Regression) model with DFT (Density Functional Theory) 
computed values.



Figure S35. Comparison of (a) *H adsorption free energy and (b) *OOH adsorption free energy 
calculated from the GPR (Gaussian Process Regression with Regularization) model with DFT 
(Density Functional Theory) computed values.



Figure S36. Comparison of (a) *H adsorption free energy and (b) *OOH adsorption free energy 
calculated from the NN (Neural Network) model with DFT (Density Functional Theory) 
computed values.



Figure S37. Comparison of (a) *H adsorption free energy and (b) *OOH adsorption free energy 
calculated from the LASSO model with DFT (Density Functional Theory) computed values.



Figure S38. Comparison of (a) *OOH adsorption free energy and (b) *H adsorption free energy 
calculated from the KNN model with DFT (Density Functional Theory) computed values, removing 
the M-O/M-H lengths as a descriptor. Comparison of (c) *OOH adsorption free energy and (e) *H 
adsorption free energy calculated from the GBR model with DFT (Density Functional Theory) 
computed values and importance analysis of each feature for (d) *OOH adsorption free energy and 
(f) *H adsorption free energy. removing the M-O/M-H lengths as a descriptor.



Figure S39. MN4 configurations of different sizes and their effects on adsorption properties of *H 
and *OOH.
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