Supplementary Information (SI) for Nanoscale Horizons. This journal is © The Royal Society of Chemistry 2024

Supporting information

Edge-doped substituents as an emerging atomic-level strategy for enhancing M-N₄-C singleatom catalysts in electrocatalysis of ORR, OER, and HER

Liang Xie^a, Wei Zhou^{a*}, Zhibin Qu^a, Yuming Huang^a, Longhao Li^a, Chaowei Yang^a, Junfeng Li^a, Xiaoxiao Meng^a, Fei Sun^a, Jihui Gao^a, Guangbo Zhao^a.

a School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001 P. R. China

* Corresponding author:

E-mail addresses: hitzhouw@hit.edu.cn (Wei Zhou)

Figure S1. The variations of (a) temperature, (b) energy and (c) Co-N bond versus the AIMD simulation time for 1500fs of CoN₄ under 298.15 K. The variations of (d) temperature, (e) energy and (f) Fe-N bond versus the AIMD simulation time for 1500fs of FeN₄ under 298.15 K. Ab initio molecular dynamics calculations at the B97-3c level [1] using ORCA program [2-4] structural relaxation was performed at 298.15K

 $\begin{array}{l} Figure \ S2. \ Optimized \ structure \ of \ Sub@FeN_4. (a) \ FeN_4 \ , (b) \ B@FeN_4 \ , (c) \ N@FeN_4 \ , (d) \ S@FeN_4 \ , (e) \ O@FeN_4 \ , (f) \ CH_3@FeN_4 \ , (g) \ OCH_3@FeN_4 \ , (h) \ NO_2@FeN_4 \ , (i) \ SO_4@FeN_4 \ , (j) \ NH_2@FeN_4. \end{array}$

Figure S3. Optimized structure of Sub@CoN₄. (a) CoN_4 , (b) B@CoN₄, (c) N@CoN₄, (d) S@CoN₄, (e) O@CoN₄, (f) CH₃@CoN₄, (g) OCH₃@CoN₄, (h) NO₂@CoN₄, (i) SO₄@CoN₄, (j) NH₂@CoN₄.

 $\begin{array}{l} Figure \ S4. \ Optimized \ structure \ of \ Sub@NiN_4. (a) \ NiN_4 \ , (b) \ B@NiN_4 \ , (c) \ N@NiN_4 \ , (d) \ S@NiN_4 \ , (e) \ O@NiN_4 \ , (f) \ CH_3@NiN_4 \ , (g) \ OCH_3@NiN_4 \ , (h) \ NO_2@NiN_4 \ , (i) \ SO_4@NiN_4 \ , (j) \ NH_2@NiN_4. \end{array}$

 $\begin{array}{l} Figure \ S5. \ Optimized \ structure \ of \ Sub@CuN_4. \ (a) \ CuN_4 \ , \ (b) \ B@CuN_4 \ , \ (c) \ N@CuN_4 \ , \ (d) \\ S@CuN_4 \ , \ (e) \ O@CuN_4 \ , \ (f) \ CH_3@CuN_4 \ , \ (g) \ OCH_3@CuN_4 \ , \ (h) \ NO_2@CuN_4 \ , \ (i) \ SO_4@CuN_4 \ , \ (j) \\ NH_2@CuN_4. \end{array}$

Figure S6 The formation energy of Sub@MN₄. (a) Sub@FeN₄; (b) Sub@CoN₄; (c) Sub@NiN₄; (d) Sub@CuN₄. The formula for calculating the formation energy is as follows: $E_f = E_{Sub@MN4} - E_{Sub@N4}$ - E_M . In theoretical calculations, this indicator is widely used to assess stability, where $E_{Sub@MN4}$, $E_{sub@N4}$ and E_M represent the electronic energies of Sub@MN₄, Sub@N₄ and M, respectively.

Figure S7. Free energy diagrams for ORR/OER on (a) Sub@FeN₄, (b) Sub@CoN₄, (c) SubNiN₄, and (d) Sub@CuN₄ catalysts

Figure S8. Volcano plots for ORR on Sub@FeN4, Sub@CoN4, SubNiN4, and Sub@CuN4.

Figure S9. Free energy diagrams for HER on (a) $Sub@FeN_4$, (b) $Sub@CoN_4$, (c) $SubNiN_4$, and (d) $Sub@CuN_4$ catalysts; Volcano plots for HER on (e) $Sub@FeN_4$, (f) $Sub@CoN_4$, (g) $SubNiN_4$, and (h) $Sub@CuN_4$ catalysts.

Figure S10. Variation of metal center charge in (a) Sub@FeN₄, (b) Sub@CoN₄, (c) Sub@NiN₄, and (d) Sub@CuN₄ catalysts with different edge-doping groups.

Figure S11. Charge distribution map of Sub@FeN4 catalyst.

Figure S12. Charge distribution map of Sub@FeN4 catalyst after *OOH adsorption.

Figure S13. Charge distribution map of Sub@FeN4 catalyst after *H adsorption.

Figure S14. Charge distribution map of Sub@CoN4 catalyst.

Figure S15. Charge distribution map of Sub@CoN4 catalyst after *OOH adsorption.

Figure S16. Charge distribution map of Sub@CoN4 catalyst after *H adsorption.

Figure S17. Charge distribution map of Sub@NiN4 catalyst.

Figure S18. Charge distribution map of Sub@NiN₄ catalyst with *OOH adsorption.

Figure S19. Charge distribution map of Sub@NiN $_4$ catalyst with *H adsorption.

Figure S20. Charge distribution map of Sub@CuN_4 catalyst.

Figure S21. Charge distribution map of Sub@CuN₄ catalyst with *OOH adsorption.

Figure S22. Charge distribution map of Sub@CuN₄ catalyst with *H adsorption.

Figure S23. Structure-activity relationships in MN_4 . Correlation of *OOH adsorption free energy with (a) M-O bond length, (b) metal center charge, (c) d-band center, and (d) fundamental gap; correlation of *H adsorption free energy with (e) M-H bond length, (f) metal center charge, (g) d-band center, and (h) fundamental gap.

Figure S24. Structure-activity relationships in Sub@ MN_4 . Correlation of *OOH adsorption free energy with (a) M-O bond length, (b) metal center charge, (c) d-band center, and (d) fundamental gap; correlation of *H adsorption free energy with (e) M-H bond length, (f) metal center charge, (g) d-band center, and (h) fundamental gap.

Figure S25. Structure-activity relationships in Sub@MN₄ considering the implicit solvent model. Correlation of *OOH adsorption free energy with (a) M-O bond length, (b) metal center charge, (c) d-band center, and (d) fundamental gap; correlation of *H adsorption free energy with (e) M-H bond length, (f) metal center charge, (g) d-band center, and (h) fundamental gap.

Figure S26. d-band center of Fe in Sub@FeN4 catalyst.

Figure S27. d-band center of Co in Sub@CoN4 catalyst.

Figure S28. d-band center of Ni in Sub@NiN4 catalyst.

Figure S29. d-band center of Cu in Sub@CuN₄ catalyst.

Figure S30. Comparison of (a) *OOH adsorption free energy and (c) *H adsorption free energy calculated from the Random Forest Regression (RFR) model with DFT (Density Functional Theory) computed values. Importance analysis of each feature for (b) *OOH adsorption free energy and (d) *H adsorption free energy.

Figure S31. Comparison of (a) *OOH adsorption free energy and (c) *H adsorption free energy calculated from the XGBoost Regression (XGBR) model with DFT (Density Functional Theory) computed values. Importance analysis of each feature for (b) *OOH adsorption free energy and (d) *H adsorption free energy.

Figure S32. Comparison of (a) *OOH adsorption free energy and (b) *H adsorption free energy calculated from the LINER model with DFT (Density Functional Theory) computed values.

Figure S33. Comparison of (a) *OOH adsorption free energy and (b) *H adsorption free energy calculated from the KNN (K-Nearest Neighbors) model with DFT (Density Functional Theory) computed values.

Figure S34. Comparison of (a) *OOH adsorption free energy and (b) *H adsorption free energy calculated from the SVR (Support Vector Regression) model with DFT (Density Functional Theory) computed values.

Figure S35. Comparison of (a) *H adsorption free energy and (b) *OOH adsorption free energy calculated from the GPR (Gaussian Process Regression with Regularization) model with DFT (Density Functional Theory) computed values.

Figure S36. Comparison of (a) *H adsorption free energy and (b) *OOH adsorption free energy calculated from the NN (Neural Network) model with DFT (Density Functional Theory) computed values.

Figure S37. Comparison of (a) *H adsorption free energy and (b) *OOH adsorption free energy calculated from the LASSO model with DFT (Density Functional Theory) computed values.

Figure S38. Comparison of (a) *OOH adsorption free energy and (b) *H adsorption free energy calculated from the KNN model with DFT (Density Functional Theory) computed values, removing the M-O/M-H lengths as a descriptor. Comparison of (c) *OOH adsorption free energy and (e) *H adsorption free energy calculated from the GBR model with DFT (Density Functional Theory) computed values and importance analysis of each feature for (d) *OOH adsorption free energy and (f) *H adsorption free energy. removing the M-O/M-H lengths as a descriptor.

Figure S39. MN_4 configurations of different sizes and their effects on adsorption properties of *H and *OOH.

References:

(1) J. G. Brandenburg, C. Bannwarth, A. Hansen and S. Grimme, *Journal of Chemical Physics*, 2018, 148, 064104.

(2) F. Neese, Wiley Interdiscip Rev Comput Mol Sci, 2017, e1327.

(3) F. Neese, Wiley Interdiscip Rev Comput Mol Sci, 2022, 12.

(4) F. Neese, F. Wennmohs, U. Becker and C. Riplinger, *Journal of Chemical Physics*, 2020, 152, 224108.