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Figure. S1. Schematic diagram of the process of preparing superhydrophilic copper 
mesh by chemical etching and superhydrophobic copper mesh by thiol modification.
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Figure. S2. Hydrophobic recovery of superhydrophilic mesh surfaces probing tests.

Figure. S3. Detour Flow Schematic.



Figure. S4. Effect of copper mesh specification (grid aperture radius) on fog collection 
efficiency.

After cleaning, the surface of the original copper mesh was treated with ammonia 
etching to promote the growth of copper oxide on the surface, so as to modify it into a 
super hydrophilic surface. Then ODT was grafted to make -sulfhydryl (-SH) group   
superhydrophobic surface. The specific chemical reaction process is shown in the 
Figure S5.

Figure. S5. Chemical reaction equations for ammonia-based etching and modification 
processes.

By analyzing EDS images of the copper mesh and EDS element normalization diagram 
of the local copper mesh (Figure S6a-b), it can be seen that the O content of SHL 
surface of the sample after ammonia etching of the original copper mesh OS increases 
significantly, and the surface is composed of uniformly distributed micro-nano needle 



structures composed of Cu(OH)2. In addition, after hydrophobic modification of SHL 
copper mesh, the carbon content on the surface of the sample increased significantly, 
and the uniform distribution of C and S elements on the surface of the copper mesh 
could be clearly observed in the EDS image of Figure 4-f, which further confirmed that 
mercaptan was successfully grafted to the surface of Cu(OH)2, and SHB copper mesh 
was obtained.

Figure. S6. (a)EDS element distribution of OS, SHL, SHB local image of copper mesh 
surface(b)Elemental normalization mapping of OS, SHL, SHB copper mesh surfaces.

Figure. S7. Comparison of the catchment performance of the samples with other jobs 
[1-12].
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