Supporting Information

Dipole-induced transition from Schottky to Ohmic contact at Janus MoSiGeN₄/metal interfaces

Wen Ai,^a Xiaohui Hu,^{a,b}* Tao Xu,^c Jian Yang,^{a,b}* Litao Sun^c

^a College of Materials Science and Engineering, Nanjing Tech University, Nanjing

211816, China

^b Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 211816, China

^c SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing 210096, China

* Corresponding authors. Email: xiaohui.hu@njtech.edu.cn, yangjian1976@163.com.

Fig. S1 Partial density of states for (a) Al/MSGN, (b) Ag/MSGN, (c) Cu/MSGN, (d) Au/MSGN, (e) Pd/MSGN, and (f) Pt/MSGN interfaces.

Fig. S2 Partial density of states for (a) Al/MGSN, (b) Ag/MGSN, (c) Cu/MGSN, (d) Au/MGSN, (e) Pd/MGSN, and (f) Pt/MGSN interfaces.

Fig. S3 Schottky-Mott plot for (a, b) n-SBH and (c, d) p-SBH for metal/MSGN and metal/MGSN interfaces. The pink and gray lines represent the pinning factor S with and without ΔV modified, respectively.

Fig. S4 Plane-averaged differential charge density of (a) Al/MSGN, (b) Ag/MSGN, (c)
Cu/MSGN, (d) Au/MSGN, (e) Pd/MSGN, (f) Pt/MSGN, (g) Al/MGSN, (h) Ag/MGSN,
(i) Cu/MGSN, (j) Au/MGSN, (k) Pd/MGSN, and (l) Pt/MGSN. The red (blue) color
denotes electron accumulation (depletion).

Fig. S5 Calculated plane-averaged electrostatic potentials for MoSiGeN₄ monolayer. The values of the intrinsic potential step (ΔV) and dipoles (D_0) for the MoSiGeN₄ monolayer are indicated in the figure.

Fig. S6 The change of ΔV with total dipole (D_{tot}) for (a) metal/MSGN and (b) metal/MGSN interfaces.

Table S1 The optimized geometric parameters of Janus MoSiGeN₄ monolayer and MoSi₂N₄ monolayer, including lattice constants (a, b), bond length of Ge-N (d_1 , d_2), Mo-N (d_3 , d_4), Si-N (d_5 , d_6), and the thickness of the Janus MoSiGeN₄ monolayer and MoSi₂N₄ monolayer (d_t).

Material	a (Å)	d_1 (Å)	d_2 (Å)	d_3 (Å)	d_4 (Å)	d_5 (Å)	$d_{6}(\text{\AA})$	$d_{t}(\text{\AA})$
MoSiGeN ₄	2.96	1.841	1.885	2.106	2.108	1.748	1.777	7.261
MoSi ₂ N ₄	2.91	1.755	1.747	2.096	2.096	1.747	1.755	7.012

Table S2 The lattice mismatch (δ) between MoSiGeN₄ and bulk metals. The work

function of 2D metals without strain (W_M) and under strain (W_{M-S}) .							
	metal	Al	Ag	Cu	Au	Pd	

metal	Al	Ag	Cu	Au	Pd	Pt
δ (%)	3.53	0.59	1.56	2.63	5.61	5.07
$W_{M}(eV)$	4.06	4.55	4.84	5.22	5.46	5.76
W _{M-S} (eV)	4.11	4.46	4.81	5.27	5.24	5.60

Table S3 The minimum ELF value at the center of the line profile curves for metal/MoSiGeN₄ interfaces.

ELF	Si-N side	Ge-N side
Al	0.039	0.046
Ag	0.042	0.042
Cu	0.049	0.055
Au	0.039	0.046
Pd	0.058	0.057
Pt	0.052	0.055

Q
.0297
.0599
.0095
.0154
).0054
).0187
.0402
.0789
.0708
.0335
.0309
.0045
).(.(.(

Table S4 The values of the n-SBH, p-SBH, W_M , E_f , ΔV , V_0 , V_{int} , D_{tot} , D_0 , ΔD , d, E_b , and Q for the metal/MoSiGeN₄ interfaces.

	$\Phi_{\mathrm{TB}}\left(\mathrm{eV} ight)$		D _{TB} (Å)		TP (%)		$\rho_{\rm t} (10^{-9} \Omega \cdot {\rm cm}^2)$	
	Si-N	Ge-N	Si-N	Ge-N	Si-N	Ge-N	Si-N	Ge-N
Al	3.13	3.34	1.69	1.61	14.20	14.64	1.865	1.689
Ag	3.35	3.60	1.43	1.28	18.11	20.49	1.421	1.310
Cu	3.47	3.87	1.46	1.56	16.96	13.50	1.427	1.600
Au	4.41	3.85	1.61	1.34	11.01	17.99	1.834	1.242
Pd	2.79	3.50	0.92	0.95	36.68	31.32	0.056	0.066
Pt	3.78	2.62	1.28	0.94	19.68	37.01	1.236	0.058

Table S5 The tunnel barriers height (Φ_{TB}), tunnel barrier width (D_{TB}), tunneling probability (TP), and the tunneling specific resistivity (ρ_t) for metal/MGSN (Ge-N) and

metal/MSGN (Si-N) interfaces.