Phen-2NO, a new C₂-symmetric rigid-featured tetradentate ligand and its application in asymmetric alkylation reaction of indoles

Zi-Yue Chen^{a,c}, Ke-Lan Xu^{a,c}, Xi-Rui Wang^{a,c}, Pan Hu^{a,c}, Wei-Yan Jiang^{b,*}, Yi-Feng Dai,^a Li-Jun

Peng^a and Xiong-Li Liu^{a,*}

^a National & Local Joint Engineering Research Center for the Exploitation of Homology Resources of Southwest Medicine and Food, Guizhou University, Guiyang 550025, Guizhou, China.

^b Guizhou Equipment Manufacturing Polytechnic, Guiyang 550025, Guizhou, China.

^c These four authors contributed equally to this work.

*E-mail address: xlliu1@gzu.edu.cn and 1517510346@qq.com

Table of Contents

Table of contents	S1	
1. General experimental information	S2	
2. General procedure for preparation of chiral Phen-2NO ligands L1	S2	
3. Characterization data of compound 3i and ligands L	S2	
4. General procedure for preparation of chiral ligand L2a	S 8	
5. Characterization data of chiral ligand L2a	S8	
6. The gram scale synthesis of the Phen-2NO ligand L1a	S 9	
7. Catalytic asymmetric synthesis of compounds 6	S 9	
8. Characterization data of compounds 6	S10	
9. Control experiments and HPLC spectra for compound 6a	S17	
10. References	S19	
11. X-ray crystal data for compounds 3i	S20	
12. The copies of ¹ H NMR, ¹³ C NMR and HPLC spectra for compounds 3i , L and 6 S21		

1. General information

Reactions were monitored by thin layer chromatography using UV light to visualize the course of reaction. Purification of reaction products was carried out by flash chromatography. ¹H and ¹³CNMR spectra were obtained using a Bruker DPX-400 spectrometer. ¹H NMR chemical shifts are reported in ppm (δ) relative to tetramethylsilane (TMS) with the solvent resonance employed as the internal standard. Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet), coupling constants (Hz) and integration. ¹³C NMR chemical shifts are reported in ppm (δ) from tetramethylsilane (TMS) with the solvent resonance as the internal standard. Melting points were measured on an electrothermal digital melting point apparatus.

2. General procedure for preparation of chiral Phen-2NO ligands L1

General procedure A-In a sealed tube equipped with a magnetic stirring bar, phenanthroline-dicarbaldehyde **2** (1.0 mmol) and optically pure prolinamide **1** (2.4 mmol, 2.4 equiv) were added. Then, ethanol (6.0 mL) was added and the reaction was heated with stirring at reflux for 12 h. After completion of the reaction, as indicated by TLC, the aftertreatment residue was purified by flash column chromatography to give the intermediate **3**.

For the oxidation step, see: X. Liu, L. Lin and X. Feng, Chiral *N*,*N'*-dioxide ligands: synthesis, coordination chemistry and asymmetric catalysis, *Org. Chem. Front.*, 2014, **1**, 298-302. In a sealed tube equipped with a magnetic stirring bar, to the intermediate **3** was added 3.0 mL of DCM and *m*-CPBA (2.2 eq). The reaction mixture was stirred at 0 $^{\circ}$ C for 20 min. After completion of the reaction, as indicated by TLC, the aftertreatment residue was purified by flash column chromatography to furnish the Phen-2NO ligand **L1**.

3. Characterization data of compounds 3 and ligands L

3a: Light yellow solid, yield 73%, >20:1 dr; ¹H NMR (CDCl₃, 400 MHz) δ : 1.84-1.89 (m, 4H), 2.18-2.23 (m, 4H), 3.04-3.10 (m, 2H), 3.47-3.52 (m, 2H), 4.23-4.26 (m, 2H), 6.15 (s, 2H), 6.95-6.99 (m, 2H), 7.14-7.18 (m, 4H), 7.47 (d, J = 8.0 Hz, 2H), 7.58-7.61 (m, 6H), 8.09 (d, J = 8.4 Hz, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ : 23.7, 26.9, 55.3, 63.8, 83.6, 118.3, 120.0, 123.9, 125.3, 127.3, 127.8, 136.2, 136.4, 144.5, 157.5, 173.9; HRMS (ESI-TOF) m/z: Calcd. for C₃₆H₃₂N₆NaO₂ [M+Na]⁺: 603.2479; Found: 603.2467.

3i: Light yellow solid, yield 74%, >20:1 dr; ¹H NMR (CDCl₃, 400 MHz) δ : 1.84-1.90 (m, 4H), 2.17-2.22 (m, 10H), 3.04-3.11 (m, 2H), 3.48-3.54 (m, 2H), 4.20-4.23 (m, 2H), 6.16 (s, 2H), 6.79 (d, *J* = 7.2 Hz, 2H), 7.01-7.05 (m, 2H), 7.25-7.28 (m, 2H), 7.46 (d, *J* = 8.4 Hz, 2H), 7.52 (s, 2H), 7.62 (s, 2H), 8.10 (d, *J* = 8.4 Hz, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ : 19.5, 22.9, 26.1, 54.5, 63.0, 82.8, 116.4, 117.5, 119.9, 124.1, 124.5, 126.5, 126.8, 135.4, 135.6, 136.9, 143.8, 156.8, 173.1; HRMS (ESI-TOF) m/z: Calcd. for C₃₈H₃₆N₆NaO₂ [M+Na]⁺: 631.2792; Found: 631.2787.

L1a (Prepared according to general procedure A): Light yellow solid, M.p. 256.3-256.9 °C, overall yield 42%, >20:1 dr; ¹H NMR (CD₃OD, 400 MHz) δ : 2.24-2.26 (m, 2H), 2.50-2.58 (m, 2H), 2.64-2.82 (m, 4H), 3.97-4.01 (m, 2H), 4.19-4.27 (m, 2H), 5.43 (d, *J* = 7.6 Hz, 2H), 6.92 (s, 2H), 7.09-7.13 (m, 2H), 7.22-7.26 (m, 4H), 7.44-7.46 (m, 4H), 7.80-7.83 (m, 2H), 7.97 (d, *J* = 8.0 Hz, 2H), 8.38-8.40 (m, 2H); ¹³C NMR (CD₃OD, 100 MHz) δ : 22.0, 24.8, 71.0, 77.4, 87.4, 122.6, 126.0, 126.4, 127.3, 128.9, 129.7, 135.7, 137.2, 145.8, 151.7, 169.5; HRMS (ESI-TOF) m/z: Calcd. for C₃₆H₃₂N₆NaO₄ [M+Na]⁺: 635.2371; Found: 635.2363.

L1b (Prepared according to general procedure A): Light yellow solid, M.p. 243.5-244.4 °C, overall yield 38%, 20:1 dr; ¹H NMR (CD₃OD, 400 MHz) δ : 2.25-2.27 (m, 2H), 2.54-2.56 (m, 2H), 2.62-2.67 (m, 2H), 2.76-2.78 (m, 2H), 4.02 (s, 2H), 4.27 (d, J = 9.6 Hz, 2H), 5.44 (s, 2H), 6.90-6.93 (m, 2H), 6.97-7.03 (m, 4H), 7.46-7.51 (m, 4H), 7.81-7.87 (m, 2H), 7.95-7.99 (m, 2H), 8.41-8.45 (m, 2H); ¹³C NMR (CD₃OD, 100 MHz) δ : 22.1, 24.7, 71.1, 77.2, 87.7, 115.6 (d, $J_{CF} = 23.0$ Hz), 125.5 (d, $J_{CF} = 9.3$ Hz), 126.1, 127.3, 129.8, 131.6 (d, $J_{CF} = 3.3$ Hz), 137.3, 145.9, 151.6, 161.5 (d, $J_{CF} = 244.1$ Hz), 169.6; HRMS (ESI-TOF) m/z: Calcd. for C₃₆H₃₀F₂N₆NaO₄ [M+Na]⁺: 671.2189; Found: 671.2177.

L1c (Prepared according to general procedure A): Light yellow solid, M.p. 231.1-232.2 °C, overall yield 35%, 15:1 dr; ¹H NMR (CD₃OD, 400 MHz) δ : 2.25-2.27 (m, 2H), 2.51-2.61 (m, 2H), 2.66-2.75 (m, 2H), 2.76-2.85 (m, 2H), 3.95-4.00 (m, 2H), 4.17-4.25 (m, 2H), 5.39 (d, J = 6.4 Hz, 2H), 6.83-6.88 (m, 2H), 6.99 (s, 2H), 7.17-7.26 (m, 4H), 7.49-7.53 (m, 2H), 7.87 (s, 2H), 8.04 (d, J = 8.0 Hz, 2H), 8.46 (d, J = 8.0 Hz, 2H); ¹³C NMR (CD₃OD, 100 MHz) δ : 22.0, 24.9, 71.1, 77.3, 86.8, 108.9 (d, $J_{CF} = 26.3$ Hz), 112.7 (d, $J_{CF} = 21.4$ Hz), 117.0, 126.0, 127.3, 129.8, 130.4 (d, $J_{CF} = 10.1$ Hz), 137.3 (d, $J_{CF} = 8.4$ Hz), 145.8, 151.4, 162.6 (d, $J_{CF} = 243.4$ Hz), 169.4; HRMS (ESI-TOF) m/z: Calcd. for C₃₆H₃₀F₂N₆NaO₄ [M+Na]⁺: 671.2189; Found: 671.2186.

L1d (Prepared according to general procedure A): Light yellow solid, M.p. 263.1-264.0 °C, overall yield 32%, 13:1 dr; ¹H NMR (CD₃OD, 400 MHz) δ : 2.25-2.31 (m, 2H), 2.50-2.62 (m, 4H), 2.67-2.73 (m, 2H), 4.03-4.07 (m, 2H), 4.32-4.39 (m, 2H), 5.43-5.45 (m, 2H), 6.73 (s, 2H), 6.91-6.95 (m, 2H), 7.00-7.10 (m, 2H), 7.19-7.29 (m, 4H), 7.89-7.94 (m, 4H), 8.43-8.46 (m, 2H); ¹³C NMR (CD₃OD, 100 MHz) δ : 22.1, 24.7, 71.3, 76.7, 87.6, 116.1 (d, J_{CF} = 20.3 Hz), 121.9 (d,

 $J_{CF} = 12.1$ Hz), 124.8 (d, $J_{CF} = 4.4$ Hz), 126.1, 127.4, 129.5, 129.9, 130.2 (d, $J_{CF} = 8.5$ Hz), 137.2, 146.0, 151.5, 158.4 (d, $J_{CF} = 248.2$ Hz), 170.1; HRMS (ESI-TOF) m/z: Calcd. for $C_{36}H_{30}F_2N_6NaO_4$ [M+Na]⁺: 671.2184; Found: 671.2170.

L1e (Prepared according to general procedure A): Light yellow solid, M.p. 255.7-256.5 °C, overall yield 36%, 13:1 dr; ¹H NMR (CD₃OD, 400 MHz) δ : 2.25-2.27 (m, 2H), 2.55-2.58 (m, 2H), 2.68-2.71 (m, 2H), 2.77-2.83 (m, 2H), 4.00-4.02 (m, 2H), 4.22-4.27 (m, 2H), 5.43 (s, 2H), 6.95-6.99 (m, 2H), 7.23-7.28 (m, 4H), 7.47-7.54 (m, 4H), 7.76-7.85 (m, 2H), 7.99-8.03 (m, 2H), 8.39-8.44 (m, 2H); ¹³C NMR (CD₃OD, 100 MHz) δ : 22.1, 24.8, 71.1, 77.3, 87.2, 124.1, 126.1, 127.3, 129.0, 129.8, 131.7, 134.4, 137.4, 145.8, 151.5, 169.5; HRMS (ESI-TOF) m/z: Calcd. for C₃₆H₃₀Cl₂N₆NaO₄ [M+Na]⁺: 703.1578; Found: 703.1566.

L1f (Prepared according to general procedure A): Light yellow solid, M.p. 257.1-258.3 °C, overall yield 32%, 12:1 dr; ¹H NMR (CD₃OD, 400 MHz) δ : 2.25-2.27 (m, 2H), 2.51-2.59 (m, 2H), 2.67-2.74 (m, 2H), 2.76-2.82 (m, 2H), 3.95-3.99 (m, 2H), 4.17-4.25 (m, 2H), 5.38 (d, *J* = 6.8 Hz, 2H), 6.99 (s, 2H), 7.11-7.13 (m, 2H), 7.17-7.21 (m, 2H), 7.31-7.33 (m, 2H), 7.68 (d, *J* = 2.0 Hz, 2H), 7.85 (s, 2H), 8.04 (d, *J* = 8.4 Hz, 2H), 8.45 (d, *J* = 8.4 Hz, 2H); ¹³C NMR (CD₃OD, 100 MHz) δ : 22.0, 24.9, 71.1, 77.3, 86.8, 120.0, 121.6, 126.0, 126.1, 127.4, 129.8, 130.2, 134.3, 137.1, 137.4, 145.8, 151.4, 169.5; HRMS (ESI-TOF) m/z: Calcd. for C₃₆H₃₀Cl₂N₆NaO₄ [M+Na]⁺: 703.1589; Found: 703.1577.

L1g (Prepared according to general procedure A): Light yellow solid, M.p. 257.7-258.9 °C, overall yield 35%, 15:1 dr; ¹H NMR (CD₃OD, 400 MHz) δ: 2.25-2.27 (m, 2H), 2.53-2.57 (m, 2H), 2.66-2.68 (m, 2H), 2.74-2.79 (m, 2H), 3.97-4.01 (m, 2H), 4.20-4.27 (m, 2H), 5.38 (d, *J* = 8.4 Hz,

2H), 6.95 (s, 2H), 7.37-7.44 (m, 8H), 7.87-7.89 (m, 2H), 8.00 (d, J = 8.4 Hz, 2H), 8.44-8.47 (m, 2H); ¹³C NMR (CD₃OD, 100 MHz) δ : 22.0, 24.8, 71.1, 77.2, 87.1, 119.4, 124.2, 126.1, 127.4, 129.8, 131.9, 134.8, 137.4, 145.8, 151.4, 169.4; HRMS (ESI-TOF) m/z: Calcd. for $C_{36}H_{30}Br_2N_6NaO_4$ [M+Na]⁺: 791.0569; Found: 791.0550.

L1h (Prepared according to general procedure A): Light yellow solid, M.p. 264.9-265.5 °C, overall yield 32%, 12:1 dr; ¹H NMR (CD₃OD, 400 MHz) δ : 2.17 (s, 3H), 2.23-2.24 (m, 2H), 2.52-2.57 (m, 2H), 2.66-2.70 (m, 2H), 2.74-2.79 (m, 2H), 3.97-4.01 (m, 2H), 4.19-4.27 (m, 2H), 5.44 (d, *J* = 11.6 Hz, 2H), 6.88 (s, 2H), 7.05 (d, *J* = 8.4 Hz, 4H), 7.28-7.34 (m, 4H), 7.71 (s, 2H), 7.94 (d, *J* = 8.0 Hz, 2H), 8.31 (d, *J* = 8.0 Hz, 2H); ¹³C NMR (CD₃OD, 100 MHz) δ : 23.5, 25.9, 28.7, 75.0, 81.3, 91.6, 126.7, 129.9, 131.2, 133.3, 133.6, 137.0, 140.6, 141.1, 149.8, 155.7, 173.4; HRMS (ESI-TOF) m/z: Calcd. for C₃₈H₃₆N₆NaO₄ [M+Na]⁺: 663.2682; Found: 663.2675.

L1i (Prepared according to general procedure A): Light yellow solid, M.p. 262.1-263.3 °C, overall yield 31%, 11:1 dr; ¹H NMR (CD₃OD, 400 MHz) δ : 2.22-2.26 (m, 8H), 2.50-2.57 (m, 2H), 2.65-2.80 (m, 4H), 3.96-4.00 (m, 2H), 4.18-4.25 (m, 2H), 5.44 (s, 2H), 6.90-6.94 (m, 4H), 7.07-7.12 (m, 2H), 7.18-7.22 (m, 2H), 7.31-7.33 (m, 2H), 7.71-7.78 (m, 2H), 7.98 (d, J = 8.0 Hz, 2H), 8.32-8.38 (m, 2H); ¹³C NMR (CD₃OD, 100 MHz) δ : 20.0, 22.0, 24.8, 71.0, 77.4, 87.4, 119.5, 122.6, 125.9, 127.1, 127.2, 128.7, 129.7, 135.7, 137.2, 139.1, 145.8, 151.8, 169.4; HRMS (ESI-TOF) m/z: Calcd. for C₃₈H₃₆N₆NaO₄ [M+Na]⁺: 663.2682; Found: 663.2679.

L1j (Prepared according to general procedure A): Light yellow solid, M.p. 238.4-239.5 $^{\circ}$ C, overall yield 38%, 18:1 dr; ¹H NMR (CD₃OD, 400 MHz) δ : 1.03-1.06 (m, 6H), 2.23-2.25 (m, 2H),

2.44-2.50 (m, 4H), 2.53-2.59 (m, 2H), 2.64-2.81 (m, 4H), 3.98-4.02 (m, 2H), 4.20-4.27 (m, 2H), 6.90 (s, 2H), 7.08 (d, J = 8.4 Hz, 4H), 7.37 (d, J = 8.4 Hz, 4H), 7.63 (s, 2H), 7.95 (d, J = 8.0 Hz, 2H), 8.26 (d, J = 8.0 Hz, 2H); ¹³C NMR (CD₃OD, 100 MHz) δ : 14.7, 22.0, 24.7, 27.9, 71.1, 77.4, 87.6, 122.8, 126.0, 127.2, 128.3, 129.6, 133.3, 137.1, 143.0, 145.8, 151.7, 169.4; HRMS (ESI-TOF) m/z: Calcd. for C₄₀H₄₀N₆NaO₄ [M+Na]⁺: 691.2989; Found: 691.2975.

L1k (Prepared according to general procedure A): Light yellow solid, M.p. 258.9-259.4 °C, overall yield 35%, 13:1 dr; ¹H NMR (CD₃OD, 400 MHz) δ : 2.23-2.28 (m, 2H), 2.50-2.57 (m, 2H), 2.62-2.65 (m, 2H), 2.70-2.75 (m, 2H), 3.64 (s, 6H), 3.97-4.01 (m, 2H), 4.23-4.30 (m, 2H), 5.41-5.44 (m, 2H), 6.76-6.81 (m, 6H), 7.28-7.32 (m, 4H), 7.81-7.87 (m, 2H), 7.91 (d, J = 8.0 Hz, 2H), 8.37-8.43 (m, 2H); ¹³C NMR (CD₃OD, 100 MHz) δ : 22.0, 24.6, 54.5, 71.0, 77.3, 88.1, 114.1, 125.3, 126.0, 127.3, 128.0, 129.7, 137.1, 145.9, 151.8, 158.6, 169.6; HRMS (ESI-TOF) m/z: Calcd. for C₃₈H₃₆N₆NaO₆ [M+Na]⁺: 695.2589; Found: 695.2589.

L11 (Prepared according to general procedure A): Light yellow solid, M.p. 248.8-249.7 °C, overall yield 33%, 12:1 dr; ¹H NMR (CD₃OD, 400 MHz) δ : 1.08-1.10 (m, 12H), 2.24-2.26 (m, 2H), 2.52-2.55 (m, 2H), 2.67-2.79 (m, 6H), 3.99 (s, 2H), 4.20-4.27 (m, 2H), 5.42 (s, 2H), 6.88 (d, J = 4.0 Hz, 2H), 7.11 (d, J = 6.8 Hz, 4H), 7.35-7.37 (m, 4H), 7.71-7.81 (m, 2H), 7.95 (d, J = 8.0 Hz, 2H), 8.32-8.39 (m, 2H); ¹³C NMR (CD₃OD, 100 MHz) δ : 22.0, 22.8, 24.7, 33.5, 71.0, 77.3, 87.6, 122.8, 126.0, 126.8, 127.2, 129.7, 133.3, 137.2, 145.8, 147.6, 151.8, 169.4; HRMS (ESI-TOF) m/z: Calcd. for C₄₂H₄₄N₆NaO₄ [M+Na]⁺: 719.3304; Found: 719.3290.

L6a (Prepared according to general procedure A): White solid, overall yield 35%, 10:1 dr; ¹H

NMR (DMSO- d_6 , 400 MHz) δ : 2.13-2.18 (m, 1H), 2.27-2.34 (m, 1H), 2.38-2.51 (m, 2H), 3.75-3.79 (m, 1H), 4.11-4.18 (m, 1H), 4.73-7.76 (m, 1H), 7.07 (s, 1H), 7.11-7.14 (m, 1H), 7.28-7.32 (m, 2H), 7.60 (d, J = 8.0 Hz, 2H), 7.75-7.78 (m, 1H), 7.94-8.05 (m, 3H), 8.45-8.50 (m, 2H), 9.14-9.16 (m, 1H); ¹³C NMR (DMSO- d_6 , 100 MHz) δ : 23.0, 24.8, 71.7, 77.8, 88.0, 123.2, 123.9, 126.0, 126.6, 126.7, 127.9, 129.1, 129.3, 129.4, 136.6, 136.7, 136.8, 145.2, 145.7, 150.8, 152.9, 169.8; HRMS (ESI-TOF) m/z: Calcd. for C₂₄H₂₀N₄NaO₂ [M+Na]⁺: 419.1478; Found: 419.1470.

4. General procedure for preparation of chiral ligand L2a

In a sealed tube equipped with a magnetic stirring bar, phenanthroline-dicarbaldehyde 2 (1.0 mmol) and optically pure prolinamide 1 (2.4 mmol, 2.4 equiv) were added. Then, ethanol (6.0 mL) was added and the reaction was heated with stirring at reflux for 12 h. After completion of the reaction, as indicated by TLC, the aftertreatment residue was purified by flash column chromatography to give the intermediate 3.

In a sealed tube equipped with a magnetic stirring bar, to the intermediate **3** was added 3.0 mL of DCM and *m*-CPBA (1.0 eq). The reaction mixture was stirred at 0 $^{\circ}$ C for 20 min. After completion of the reaction, as indicated by TLC, the aftertreatment residue was purified by flash column chromatography to furnish the chiral ligand L2a.

5. Characterization data of chiral ligand L2a

L2a: White solid; yield 37%, >20:1 dr; ¹H NMR (CD₃OD, 400 MHz) δ : 1.82-1.87 (m, 1H), 1.92-1.95 (m, 1H), 2.22-2.31 (m, 2H), 2.40-2.48 (m, 1H), 2.53-2.60 (m, 1H), 2.68-2.78 (m, 2H), 3.08-3.14 (m, 1H), 3.45-3.50 (m, 1H), 3.97-4.02 (m, 1H), 4.22-4.30 (m, 1H), 4.99 (d, J = 4.4 Hz,

1H), 5.40 (d, J = 6.8 Hz, 1H), 6.23 (s, 1H), 6.94 (s, 1H), 7.00-7.04 (m, 1H), 7.08-7.12 (m, 1H), 7.17-7.24 (m, 4H), 7.45-7.52 (m, 4H), 7.64-7.76 (m, 3H), 7.92 (d, J = 8.0 Hz, 1H), 8.19-8.35 (m, 2H); ¹³C NMR (CD₃OD, 100 MHz) δ : 22.1, 24.3, 24.4, 27.5, 56.0, 65.5, 70.9, 77.2, 84.2, 87.8, 122.0, 122.5, 123.0, 125.4, 125.7, 126.4, 126.6, 127.2, 128.6, 128.8, 128.9, 129.5, 137.0, 137.1, 137.3, 145.7, 145.9, 151.2, 158.3, 169.4, 175.8; HRMS (ESI-TOF) m/z: Calcd. for C₃₆H₃₂N₆NaO₃ [M+Na]⁺: 619.2420; Found: 619.2428.

6. The gram scale synthesis of the Phen-2NO ligand L1a

In a sealed tube equipped with a magnetic stirring bar, phenanthroline-dicarbaldehyde 2 (0.71 g, 3.0 mmol) and optically pure prolinamide 1a (1.37 g, 7.2 mmol) were added. Then, anhydrous ethanol (30.0 mL) was added and the reaction was heated with stirring at reflux for 12 h. After completion of the reaction, as indicated by TLC, the aftertreatment residue was purified by flash column chromatography to give the intermediate 3a.

For the oxidation step, see: X. Liu, L. Lin and X. Feng, Chiral *N*,*N*'-dioxide ligands: synthesis, coordination chemistry and asymmetric catalysis, *Org. Chem. Front.*, 2014, **1**, 298-302. In a sealed tube equipped with a magnetic stirring bar, to the intermediate **3** was added 20.0 mL of DCM and *m*-CPBA (2.2 eq). The reaction mixture was stirred at 0 °C for 30 min. After completion of the reaction, as indicated by TLC, the aftertreatment residue was purified by flash column chromatography to furnish the Phen-2NO ligand **L1a** (0.77 g, 42% overall yield, >20:1 dr).

7. Catalytic asymmetric synthesis of compounds 6

In a sealed tube equipped with a magnetic stirring bar, to the mixture of Ni(OTf)₂ (2.0 mol %), L1a (2.4 mol %) in 2.0 mL of CH₂Cl₂ was added 4 (0.30 mmol), and 5 (0.20 mmol). The reaction mixture was stirred at room temperature for 24 h and was directly loaded onto a silica gel and purified by flash chromatography to give the desired product 6, using hexane/EtOAc (10/1, v/v) as the eluent.

8. Characterization data of compounds 6

6a: Product in accordance with literature characterization data^{10a,c}. 91% yield, 99% ee, $[α]_D^{20} =$ -27.2 (*c* 0.70, CHCl₃); The ee was determined by HPLC analysis using a Chiralpak IA column (95/5 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $\tau_{major} = 33.63$ min; $\tau_{minor} = 42.85$ min); ¹H NMR (CDCl₃, 400 MHz) δ: 1.16-1.19 (m, 3H), 3.48-3.62 (m, 2H), 4.09-4.15 (m, 2H), 4.81-4.85 (m, 1H), 6.90-6.95 (m, 2H), 7.04-7.11 (m, 2H), 7.15-7.25 (m, 5H), 7.34 (d, *J* = 8.0 Hz, 1H), 7.96 (br s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ: 12.9, 36.8, 44.6, 61.5, 110.2, 118.4, 120.6, 121.2, 125.5, 126.7, 127.5, 135.5, 142.2, 159.9, 192.1.

6b: Product in accordance with literature characterization data^{10c}. 89% yield, 93% ee, $[α]_D^{20} = -22.7$ (*c* 0.45, CHCl₃); The ee was determined by HPLC analysis using a Chiralpak IA column (95/5 hexane/*i*-PrOH; flow rate: 1.0 mL/min; λ = 254 nm; $τ_{major} = 15.26$ min; $τ_{minor} = 22.01$ min); ¹H NMR (CDCl₃, 400 MHz) δ: 1.18-1.22 (m, 3H), 3.45-3.60 (m, 2H), 4.11-4.17 (m, 1H), 4.80-4.83 (m, 1H), 6.83-6.88 (m, 2H), 6.92-6.96 (m, 2H), 7.05-7.09 (m, 1H), 7.18-7.24 (m, 3H), 7.29 (d, *J* = 7.6 Hz, 1H), 8.00 (br s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ: 13.9, 37.1, 45.7, 62.6, 111.3, 115.3 (d, *J*_{CF} = 22.3 Hz), 118.2, 119.5 (d, *J*_{CF} = 29.1 Hz), 121.5, 122.4, 126.3, 129.3 (d, *J*_{CF} = 8.4 Hz), 136.6, 139.0, 161.0, 161.5 (d, *J*_{CF} = 243.3 Hz), 193.0; HRMS (ESI-TOF) m/z: Calcd. for C₂₀H₁₈FNNaO₃ [M+Na]⁺: 362.1163; Found: 362.1168.

6c: Product in accordance with literature characterization data^{10b}. 87% yield, 90% ee; The ee was determined by HPLC analysis using a Chiralpak IA column (95/5 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $\tau_{major} = 20.86$ min; $\tau_{minor} = 24.62$ min); ¹H NMR (CDCl₃, 400 MHz) *δ*: 1.16-1.20 (m, 3H), 3.45-3.61 (m, 2H), 4.10-4.16 (m, 2H), 4.80-4.84 (m, 1H), 6.74-6.79 (m, 1H), 6.90-6.96 (m, 3H), 7.02-7.15 (m, 3H), 7.20 (d, *J* = 8.0 Hz, 1H), 7.31 (d, *J* = 7.6 Hz, 1H), 8.02 (br s, 1H); ¹³C NMR (CDCl₃, 100 MHz) *δ*: 12.8, 36.4, 44.4, 61.6, 110.3, 112.5 (d, *J*_{CF} = 21.2 Hz), 113.7 (d, *J*_{CF} = 22.3 Hz), 116.5, 118.1, 118.5, 120.6, 121.3, 122.6 (d, *J*_{CF} = 247.3 Hz), 125.2, 128.9 (d, *J*_{CF} = 8.1 Hz), 129.1, 135.5, 145.0 (d, *J*_{CF} = 6.4 Hz), 159.8, 161.8 (d, *J*_{CF} = 247.3 Hz), 191.8.

6d: Product in accordance with literature characterization data^{10b}. 92% yield, 99% ee; The ee was determined by HPLC analysis using a Chiralpak IA column (95/5 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $\tau_{major} = 20.18$ min; $\tau_{minor} = 25.48$ min); ¹H NMR (CDCl₃, 400 MHz) δ: 1.18-1.21 (m, 3H), 3.45-3.60 (m, 2H), 4.11-4.17 (m, 2H), 4.78-4.82 (m, 1H), 6.91-6.96 (m, 2H), 7.05-7.09 (m, 1H), 7.12-7.18 (m, 4H), 7.23 (d, *J* = 8.0 Hz, 1H), 7.28 (d, *J* = 8.0 H, 1H), 8.00 (br s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ: 12.9, 36.1, 44.4, 61.6, 110.3, 116.7, 118.2, 118.6, 120.5, 121.4, 125.2, 127.6, 128.2, 131.2, 135.6, 140.8, 159.8, 191.8.

6e: Product in accordance with literature characterization data^{10b,c}. 89% yield, 97% ee, $[α]_D^{20}$ = -22.1 (*c* 0.43, CHCl₃); The ee was determined by HPLC analysis using a Chiralpak IA column (95/5 hexane/*i*-PrOH; flow rate: 1.0 mL/min; λ = 254 nm; $τ_{major} = 27.09$ min; $τ_{minor} = 33.78$ min); ¹H NMR (CDCl₃, 400 MHz) δ: 1.18-1.21 (m, 3H), 3.36-3.42 (m, 1H), 3.59-3.66 (m, 1H), 4.13-4.18 (m, 2H), 5.34-5.38 (m, 1H), 6.92-6.96 (m, 2H), 7.00-7.06 (m, 3H), 7.10-7.12 (m, 1H),

7.21 (d, J = 8.4 Hz, 1H), 7.28-7.30 (m, 1H), 7.35 (d, J = 8.0 Hz, 1H), 8.03 (br s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ : 12.9, 33.2, 43.6, 61.5, 110.2, 115.8, 118.3, 118.5, 121.1, 121.3, 125.4, 126.0, 126.9, 128.0, 128.7, 132.4, 135.5, 139.5, 159.9, 191.7.

6f: 87% yield, 98% ee; The ee was determined by HPLC analysis using a Chiralpak IA column (95/5 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $\tau_{major} = 30.33$ min; $\tau_{minor} = 38.88$ min); ¹H NMR (CDCl₃, 400 MHz) δ: 1.19-1.22 (m, 3H), 3.34-3.40 (m, 1H), 3.59-3.66 (m, 1H), 4.14-4.19 (m, 2H), 5.37-5.40 (m, 1H), 6.92-6.97 (m, 3H), 7.00-7.03 (m, 1H), 7.05-7.09 (m, 1H), 7.20-7.22 (m, 2H), 7.31 (d, J = 7.6 Hz, 1H), 8.05 (br s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ: 12.2, 33.4, 42.6, 60.9, 109.5, 114.8, 117.5, 118.0, 120.4, 120.8, 124.6, 125.4, 125.6, 127.0, 130.1, 131.6, 134.8, 141.3, 159.1, 190.6; HRMS (ESI-TOF) m/z: Calcd. for C₂₀H₁₇Cl₂NNaO₃ [M+Na]⁺: 412.0478; Found: 412.0484.

6g: Product in accordance with literature characterization data^{10b,c}. 90% yield, 95% ee, $[\alpha]_D^{20} =$ -27.9 (*c* 0.50, CHCl₃); The ee was determined by HPLC analysis using a Chiralpak IA column (95/5 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $\tau_{major} = 16.04$ min; $\tau_{minor} = 25.17$ min); ¹H NMR (CDCl₃, 400 MHz) δ : 1.18-1.21 (m, 3H), 3.44-3.60 (m, 2H), 4.11-4.17 (m, 2H), 4.76-4.80 (m, 1H), 6.90-6.96 (m, 2H), 7.05-7.12 (m, 3H), 7.21 (d, *J* = 8.0 Hz, 1H), 7.27-7.29 (m, 3H), 8.01 (br s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ : 11.7, 35.0, 43.1, 60.4, 109.1, 115.4, 117.0, 117.4, 118.1, 119.3, 120.2, 124.0, 127.4, 129.4, 134.3, 140.1, 158.6, 190.6.

6h: Product in accordance with literature characterization data^{10c}. 88% yield, 98% ee, $[\alpha]_D^{20} =$ -28.2 (*c* 0.43, CHCl₃); The ee was determined by HPLC analysis using a Chiralpak IA column

(95/5 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $\tau_{major} = 15.51$ min; $\tau_{minor} = 18.78$ min); ¹H NMR (CDCl₃, 400 MHz) δ : 1.18-1.22 (m, 3H), 3.34-3.39 (m, 1H), 3.58-3.65 (m, 1H), 4.13-4.19 (m, 2H), 5.32-5.35 (m, 1H), 6.93-6.97 (m, 3H), 7.03-7.11 (m, 3H), 7.21 (d, J = 8.4 Hz, 1H), 7.35 (d, J = 8.0 Hz, 1H), 7.48-7.50 (m, 1H), 8.03 (br s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ : 14.0, 37.1, 44.8, 62.6, 111.3, 117.0, 119.5, 119.6, 122.2, 122.4, 124.3, 126.5, 127.8, 128.3, 129.2, 133.1, 136.6, 142.2, 161.0, 192.7; HRMS (ESI-TOF) m/z: Calcd. for C₂₀H₁₈BrNNaO₃ [M+Na]⁺: 422.0362; Found: 422.0365.

6i: 82% yield, 95% ee; The ee was determined by HPLC analysis using a Chiralpak IA column (95/5 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $\tau_{major} = 15.40$ min; $\tau_{minor} = 13.50$ min); ¹H NMR (DMSO-*d*₆, 400 MHz) δ: 1.21-1.24 (m, 3H), 3.35-3.41 (m, 1H), 3.58-3.64 (m, 1H), 4.16-4.21 (m, 2H), 5.29-5.33 (m, 1H), 6.90-6.96 (m, 2H), 7.03-7.09 (m, 3H), 7.21-7.24 (m, 2H), 7.29-7.32 (m, 1H), 8.05 (br s, 1H); ¹³C NMR (DMSO-*d*₆, 100 MHz) δ: 14.2, 33.6, 44.7, 62.3, 111.6, 116.6, 119.4, 120.1, 124.6, 125.4, 126.5, 127.9, 128.5, 129.7, 129.8, 132.9, 137.2, 141.5, 160.8, 192.6; HRMS (ESI-TOF) m/z: Calcd. for C₂₀H₁₇Cl₂NNaO₃ [M+Na]⁺: 412.0478; Found: 412.0479.

6j: 85% yield, 91% ee; The ee was determined by HPLC analysis using a Chiralpak IA column (95/5 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $\tau_{major} = 19.42$ min; $\tau_{minor} = 16.17$ min); ¹H NMR (CDCl₃, 400 MHz) δ : 1.20-1.23 (m, 3H), 3.43-3.58 (m, 2H), 4.14-4.19 (m, 2H), 4.73-4.76 (m, 1H), 6.89-6.94 (m, 2H), 7.08-7.10 (m, 2H), 7.15 (d, J = 8.4 Hz, 1H), 7.22 (d, J = 1.6 Hz, 1H), 7.29-7.31 (m, 2H), 8.04 (br s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ : 12.9, 36.0, 44.2, 61.7, 110.2, 116.9, 119.1, 119.4, 119.5, 121.1, 123.8, 127.4, 128.5, 130.7, 135.9, 141.0, 159.8, 191.6; HRMS (ESI-TOF) m/z: Calcd. for C₂₀H₁₇BrClNNaO₃ [M+Na]⁺: 455.9973; Found: 455.9977.

6k: 83% yield, 91% ee; The ee was determined by HPLC analysis using a Chiralpak IA column (95/5 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $\tau_{major} = 17.61$ min; $\tau_{minor} = 15.15$ min); ¹H NMR (CDCl₃, 400 MHz) δ: 1.18-1.22 (m, 3H), 2.20 (s, 3H), 3.44-3.59 (m, 2H), 4.12-4.17 (m, 2H), 4.74-4.77 (m, 1H), 6.88-6.94 (m, 2H), 6.99 (d, J = 8.0 Hz, 2H), 7.10 (d, J = 8.0 Hz, 2H), 7.20-7.22 (m, 2H), 7.97 (br s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ: 12.9, 36.0, 44.2, 61.7, 110.2, 116.9, 119.1, 119.4, 119.5, 121.1, 123.8, 127.4, 128.5, 130.7, 135.9, 141.0, 159.8, 191.6; HRMS (ESI-TOF) m/z: Calcd. for C₂₁H₂₀CINNaO₃ [M+Na]⁺: 392.1024; Found: 392.1024.

6I: Product in accordance with literature characterization data^{10b,c}. 91% yield, 93% ee, $[\alpha]_D^{20} =$ -55.2 (*c* 0.57, CHCl₃); The ee was determined by HPLC analysis using a Chiralpak IA column (95/5 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $\tau_{major} = 31.16$ min; $\tau_{minor} = 36.82$ min); ¹H NMR (CDCl₃, 400 MHz) δ : 1.23-1.27 (m, 3H), 3.54-3.68 (m, 2H), 3.73 (s, 3H), 4.17-4.22 (m, 2H), 4.83-4.87 (m, 1H), 6.77-6.83 (m, 2H), 6.94 (d, *J* = 2.4 Hz, 1H), 7.14-7.18 (m, 2H), 7.22-7.27 (m, 2H), 7.31-7.33 (m, 2H), 7.99 (br s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ : 13.9, 37.8, 45.6, 55.9, 62.6, 101.4, 112.0, 112.3, 117.9, 122.4, 126.6, 126.9, 127.8, 128.6, 131.8, 143.3, 153.9, 161.0, 193.3.

6m: Product in accordance with literature characterization data^{10c}. 92% yield, 95% ee, $[α]_D^{20}$ = -34.4 (*c* 0.37, CHCl₃); The ee was determined by HPLC analysis using a Chiralpak IA column (95/5 hexane/*i*-PrOH; flow rate: 1.0 mL/min; λ = 254 nm; $τ_{major} = 13.75$ min; $τ_{minor} = 19.70$ min); ¹H NMR (CDCl₃, 400 MHz) δ: 1.19-1.23 (m, 3H), 3.44-3.57 (m, 2H), 3.67 (s, 3H), 4.13-4.18 (m, 2H), 4.73-4.77 (m, 1H), 6.70-6.76 (m, 2H), 6.91 (d, *J* = 2.4 Hz, 1H), 7.11-7.19 (m, 5H), 7.91 (br s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ: 13.9, 37.1, 45.4, 55.9, 62.6, 101.3, 111.9, 112.4, 117.6, 122.2,

126.7, 128.7, 129.2, 131.7, 132.3, 141.8, 154.0, 160.9, 192.8; HRMS (ESI-TOF) m/z: Calcd. for $C_{21}H_{20}CINNaO_4 [M+Na]^+$: 408.0973; Found: 408.0969.

6n: Product in accordance with literature characterization data^{10c}. 92% yield, 97% ee, $[α]_D^{20}$ = -37.2 (*c* 0.36, CHCl₃); The ee was determined by HPLC analysis using a Chiralpak IA column (95/5 hexane/*i*-PrOH; flow rate: 1.0 mL/min; λ = 254 nm; $τ_{major} = 9.40$ min; $τ_{minor} = 16.28$ min); ¹H NMR (DMSO-*d*₆, 400 MHz) δ: 1.21-1.25 (m, 3H), 3.49-3.55 (m, 1H), 3.68 (s, 3H), 3.76-3.83 (m, 1H), 4.17-4.23 (m, 2H), 5.16-5.19 (m, 1H), 6.71-6.74 (m, 1H), 6.88 (d, *J* = 2.4 Hz, 1H), 7.17-7.25 (m, 4H), 7.38-7.44 (m, 2H), 10.81 (br s, 1H); ¹³C NMR (DMSO-*d*₆, 100 MHz) δ: 14.2, 33.7, 44.7, 55.7, 62.3, 100.9, 111.5, 112.7, 116.2, 123.8, 127.8, 128.3, 129.7, 129.8, 132.0, 141.7, 153.5, 160.8, 192.8; HRMS (ESI-TOF) m/z: Calcd. for C₂₁H₂₀CINNaO₄ [M+Na]⁺: 408.0973; Found: 408.0974.

60: Product in accordance with literature characterization data^{10c}. 93% yield, 96% ee, $[\alpha]_D^{20} =$ -45.0 (*c* 0.24, CHCl₃); The ee was determined by HPLC analysis using a Chiralpak IA column (95/5 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $\tau_{major} = 36.32$ min; $\tau_{minor} = 53.68$ min); ¹H NMR (CDCl₃, 400 MHz) δ : 1.16-1.20 (m, 3H), 3.42-3.57 (m, 2H), 3.65 (s, 3H), 4.10-4.16 (m, 2H), 4.70-4.74 (m, 1H), 6.69-6.73 (m, 2H), 6.85 (s, 1H), 7.06-7.10 (m, 3H), 7.26 (d, *J* = 8.8 Hz, 2H), 7.99 (br s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ : 12.2, 35.4, 43.5, 54.1, 60.9, 99.5, 110.2, 110.6, 115.7, 118.6, 120.5, 124.9, 127.8, 129.8, 130.0, 140.5, 152.2, 159.1, 191.0; HRMS (ESI-TOF) m/z: Calcd. for C₂₁H₂₀BrNNaO₄ [M+Na]⁺: 452.0468; Found: 452.0474.

6p: Product in accordance with literature characterization data^{10c}. 91% yield, 97% ee, $[\alpha]_D^{20} =$

-42.5 (*c* 0.37, CHCl₃); The ee was determined by HPLC analysis using a Chiralpak IA column (95/5 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $\tau_{major} = 9.64$ min; $\tau_{minor} = 15.29$ min); ¹H NMR (CDCl₃, 400 MHz) δ : 1.90-1.23 (m, 3H), 3.34-3.39 (m, 1H), 3.57-3.64 (m, 1H), 3.68 (s, 3H), 4.14-4.19 (m, 2H), 5.27-5.31 (m, 1H), 6.71-6.74 (m, 1H), 6.82 (d, J = 2.4 Hz, 1H), 6.92-6.97 (m, 2H), 7.05-7.13 (m, 3H), 7.48-7.50 (m, 1H), 7.95 (br s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ : 12.9, 35.9, 43.7, 54.8, 61.5, 100.3, 110.8, 111.5, 121.6, 123.2, 125.9, 126.7, 127.2, 128.2, 130.6, 132.0, 141.1, 152.9, 159.9, 191.6; HRMS (ESI-TOF) m/z: Calcd. for C₂₁H₂₀BrNNaO₄ [M+Na]⁺: 452.0468; Found: 452.0462.

6q: 88% yield, 95% ee; The ee was determined by HPLC analysis using a Chiralpak IA column (95/5 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $\tau_{major} = 21.54$ min; $\tau_{minor} = 18.18$ min); ¹H NMR (CDCl₃, 400 MHz) δ: 1.14-1.18 (m, 3H), 2.18 (s, 3H), 3.44-3.58 (m, 2H), 3.65 (s, 3H), 4.08-4.13 (m, 2H), 4.71-4.75 (m, 1H), 6.68-6.71 (m, 1H), 6.76 (d, J = 2.4 Hz, 1H), 6.84 (d, J = 2.4 Hz, 1H), 6.97 (d, J = 8.0 Hz, 2H), 7.05 (d, J = 8.8 Hz, 1H), 7.12 (d, J = 8.8 Hz, 2H), 7.91 (br s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ: 12.4, 19.5, 35.9, 44.1, 54.3, 60.9, 99.9, 110.3, 110.7, 116.7, 120.7, 125.3, 126.1, 127.7, 130.2, 134.5, 138.6, 152.3, 159.5, 191.8; HRMS (ESI-TOF) m/z: Calcd. for C₂₂H₂₃NNaO₄ [M+Na]⁺: 388.1519; Found: 388.1527.

6r: 90% yield, 98% ee; The ee was determined by HPLC analysis using a Chiralpak IA column (95/5 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $\tau_{major} = 58.96$ min; $\tau_{minor} = 73.92$ min); ¹H NMR (CDCl₃, 400 MHz) δ: 1.17-1.20 (m, 3H), 3.43-3.57 (m, 2H), 3.66 (s, 3H), 3.67 (s, 3H), 4.10-4.16 (m, 2H), 4.71-4.75 (m, 1H), 6.70-6.76 (m, 4H), 6.87 (d, J = 2.0 Hz, 1H), 7.08 (d, J = 8.8 Hz, 1H), 7.15 (d, J = 9.6 Hz, 2H), 7.91 (br s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ: 12.9, 36.0, 44.7, 54.2, 54.8, 61.5, 100.4, 110.8, 111.2, 112.9, 117.2, 121.2, 125.8, 127.7, 130.7, 134.3, 152.8, 157.1, 160.0, 192.3; HRMS (ESI-TOF) m/z: Calcd. for C₂₂H₂₃NNaO₅ [M+Na]⁺: 404.1468; Found:

6s: Product in accordance with literature characterization data^{10a,c}. 71% yield, 50% ee, $[α]_D^{20}$ = -12.4 (*c* 0.38, CHCl₃); The ee was determined by HPLC analysis using a Chiralpak IA column (85/15 hexane/*i*-PrOH; flow rate: 1.0 mL/min; λ = 254 nm; $τ_{major} = 16.07$ min; $τ_{minor} = 15.24$ min); ¹H NMR (DMSO-*d*₆, 400 MHz) δ: 1.20-1.23 (m, 3H), 3.55-3.62 (m, 1H), 3.68-3.74 (m, 4H), 4.15-4.21 (m, 2H), 4.70-4.74 (m, 1H), 6.92-6.95 (m, 1H), 7.08-7.14 (m, 2H), 7.22-7.25 (m, 3H), 7.33-7.36 (m, 3H), 7.42 (d, *J* = 7.6 Hz, 1H); ¹³C NMR (DMSO-*d*₆, 100 MHz) δ: 14.2, 32.8, 37.4, 45.5, 62.3, 110.1, 117.0, 118.9, 119.3, 121.7, 126.6, 126.9, 127.0, 128.1, 128.7, 137.2, 144.8, 161.0, 193.0.

In a sealed tube equipped with a magnetic stirring bar, to the mixture of Ni(OTf)₂ (2.0 mol %), L (2.4 mol %) in 2.0 mL of CH₂Cl₂ was added 4 (0.30 mmol), and 5 (0.20 mmol). The reaction mixture was stirred at room temperature for 24 h and was directly loaded onto a silica gel and purified by flash chromatography to give the desired product **6a**, using hexane/EtOAc (10/1, v/v) as the eluent.

10. References

(a) Y. Liu, D. Shang, X. Zhou, Y. Zhu, L. Lin, X. Liu and X. Feng, *Org. Lett.*, 2010, **12**, 180-183; (b) S. Yu, Q. Cai, C. Wang, J. Hou, J. Liang, Z. Jiao, C. Yao and Y. M. Li, *J. Org. Chem.*, 2023, **88**, 3046-3053; (c) Y. H. Wang, P. Hu, X. R. Wang, K. L. Xu, Q. L. Wang, H. J. Wang and X. L. Liu, *Org. Chem. Front.*, 2024, DOI: 10.1039/D3Q001748F.

11. X-ray crystal data for compounds 3i

Table S1 Crystal data and structure refinement for 3i

Identification code	3i
Empirical formula	$C_{38}H_{40}N_6O_4$
Formula weight	644.76
Temperature/K	99.97(13)
Crystal system	orthorhombic
Space group	P2 ₁ 2 ₁ 2 ₁
a/Å, b/Å, c/Å	9.32674(13), 13.9964(2), 25.3147(3)
α /°, β /°, γ /°,	90, 90, 90
Volume/Å ³	3304.59(8)
Z	4
$\rho_{calc}g/cm^3$	1.296
μ/mm^{-1}	0.690
F(000)	1368.0
Radiation	Cu Ka ($\lambda = 1.54184$)
Crystal size/mm ³	0.15 imes 0.13 imes 0.12
2Θ range for data collection/°	6.984 to 148.426
Index ranges	$-8 \le h \le 11, -17 \le k \le 13, -31 \le l \le 30$
Reflections collected	16596
Independent reflections	6509 [$R_{int} = 0.0389, R_{sigma} = 0.0407$]
Data/restraints/parameters	6509/3/446
Goodness-of-fit on F ²	1.026
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0446, wR_2 = 0.1248$
Final R indexes [all data]	$R_1 = 0.0463, wR_2 = 0.1264$
Largest diff. peak/hole / e Å ⁻³	0.39/-0.36
Flack parameter	0.01(13)/0.01(10)

Crystal Data for $C_{38}H_{40}N_6O_4$ (*M* =644.76 g/mol): orthorhombic, space group $P2_12_12_1$ (no. 19), a = 9.32674(13) Å, b = 13.9964(2) Å, c = 25.3147(3) Å, V = 3304.59(8) Å³, Z = 4, T = 99.97(13) K, μ (Cu K α) = 0.690 mm⁻¹, *Dcalc* = 1.296 g/cm³, 16596 reflections measured (6.984° $\leq 2\Theta \leq 148.426^\circ$), 6509 unique ($R_{int} = 0.0389$, $R_{sigma} = 0.0407$) which were used in all calculations. The final R_1 was 0.0446 (I > 2 σ (I)) and wR_2 was 0.1264 (all data).

12. The copies of ¹H NMR, ¹³C NMR and HPLC spectra for compounds 3, L and 6

¹H and ¹³C NMR of 3i

S23

¹H and ¹³C NMR of L1b

¹H and ¹³C NMR of L1d

¹H and ¹³C NMR of L1f

¹H and ¹³C NMR of L1h

¹H and ¹³C NMR of L1j

¹H and ¹³C NMR of L6a

¹H and ¹³C NMR of 6b

¹H and ¹³C NMR of 6c

#	Time	Area	Height	Width	Area%	Symmetry
1	27.088	43406.6	601.7	1.1146	98.699	0.355
2	33.778	572.2	8.8	0.9387	1.301	0.717
						•

¹H and ¹³C NMR of 6l

¹H and ¹³C NMR of 6m

¹H and ¹³C NMR of 6n

#	Time	Area	Height	Width	Area%	Symmetry
1	9.637	85956.8	3555.1	0.3731	98.818	0.605
2	15.285	1027.9	29	0.5472	1.182	0.63

f1 (ppm)

¹H and ¹³C NMR of 6s

S73

