Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Nanoparticles synergistically stable pH-switched Pickering emulsion as an efficient reaction system for utilizing ammonia borane for organic conversion

Ying Zhang, ^{a,b} Pan Luo, ^d Jie Qi, ^aHongsheng Lu, ^{*, a,c}Li wang, ^{*,d} Yuanpeng Wu, ^{*,d}

^aCollege of Chemistry and Chemical Engineering, Southwest Petroleum
University, Chengdu 610500, P. R. China
^bEngineering Technology Research Institute of Southwest Oil & Gas Field
Company, PetroChina, Chengdu 610500, P. R. China
^cEngineering Research Center of Oilfield Chemistry, Ministry of Education,
Chengdu 610500, P. R. China
^dSchool of New Energy and Materials, Southwest Petroleum University,
Chengdu 610500, P.R. China
*Email: Hongsheng Lu (hshlu@swpu.edu.cn); Li Wang (wangli@swpu.edu.cn);

Yuanpeng Wu (ypwu@swpu.edu.cn)

Table of Contents

Figure S1.	The chromog	genic reaction of	SN-N	H ₂		•••••	S-1	
Figure S2. (a)Contact angles, (b)TEM image, (c)particle size distribution, (d)XPS test								
results and	(e)elemental	distribution of	SN-NH	[₂		•••••	S-1	
Figure S3.	XPS results	of O, N and	Pd in S	SN, SN-CO	DH, Pd@S	N and	Pd@SN-	
СООН							S-2	
Table S1.	elemental	distribution of	f SN,	SN-COOH	, Pd@SN	and	Pd@SN-	
СООН							S-3	
Figure	S4.	Particle		sizes	distribu	tion	of	
nanoparticle	es					•••••	S-3	
Figure S5.	Optical, mic	crograph and pa	article	size distribu	tion of Picl	kering	emulsion	
stabilized b	y SN-COOH	[•••••				S-4	
Figure S6.	Optical, mic	crograph and pa	article	size distribu	tion of Picl	kering	emulsion	
stabilized b	y SN and SN	-соон	•••••				S-5	
Figure S7. F	Particle size of	listribution of Pi	ckering	g emulsion st	abilized by	Pd@S	N-COOH	
and Pd@SN	1						S-5	
Figure S8. 7	Fest results c	of interfacial ten	sion				S-6	
Figure S9. (Dil-water int	erfacial tension.					S-6	
Figure S10	. Zeta poten	tials of 0.1wt%	and 0.	005wt% SN	-COOH dis	spersec	l in water	
with differe	nt mass frac	tions of SN					S-7	
Figure S11.	The fluores	cence emission	spectra	of FLSN an	d FLSN-CO	ООН	S-7	
Figure S12.	Particle size	of emulsion bef	fore and	l after alterna	ately adding	g NaOł	H and HCl	
aqueous sol	utions						S-8	
Figure S13	. The stand	ard curves of	the rel	ationship be	tween hyd	rogen	evolution	
amount and	conductivit	у					S-8	
Figure S14.	(a) Kinetic	study of hydrog	en evol	ution of AB	and hydrog	enatio	n reaction	
of 2,5-DHF	in the typica	l reactor and typ	pical re	action tempe	erature. (b)	Conve	rsion of 2,	
5-DHF and	selectivity o	f tetrahydrofura	n				S-9	

Figure	S15.	Schematic	Illustration	for	the	conversion	of	styrene	and	2,5-
dihydro	furan			•••••			•••••	•••••	•••••	S-9
Figure	S16 Tł	ne particle si	ze distributio	on of	emu	lsion before	and	after reac	tion i	n the
fifth cy	cle			•••••					•••••	S-10
Figure S	S17. Tl	he selectivity	of ethylbenz	zene	and te	etrahydrofura	n in	5 cycles.	•••••	.S-10

Fig.S1 The chromogenic reaction of SN-NH₂.

When the ninhydrin buffer solution and SN-NH₂ solution were heated at 110°C for 15 min, the amino group was decomposed and the ninhydrin was reduced to form a blue-purple substance, which proved that -NH graft was successful.

Fig.S2 (a)Contact angles, (b)TEM image, (c)particle size distribution, (d)XPS test results and (e)elemental distribution of SN-NH₂.

As shown in Figure S2, the contact angle increased from 10.67° to 25.45° after the silicon oxygen coupling agent was grafted on SN surface. TEM images showed that the shape of SN-NH₂ was almost the same as SN, with a particle size of 85.19 nm. The XPS test results also confirmed the successful grafting of -NH, and the atomic percentage of N was 2.52%.

Fig.S3 XPS results of O in (a)SN, (b)SN-COOH, (c)Pd@SN and (d)Pd@SN-COOH. XPS results of (e-f) Pd and (g-h) N in Pd@SN or Pd@SN-COOH.

Tab.S1 elemental distribution of SN, SN-COOH, Pd@SN and Pd@SN-COOH.

Fig.S4 Particle sizes distribution of nanoparticles. (a) SN, (b) SN-COOH, (c) Pd@SN and (d) Pd@SN-COOH. particle sizes distribution of Pd in (e) Pd@SN and (f) Pd@SN-COOH.

Fig.S5 Optical, micrograph and particle size distribution of Pickering emulsion stabilized by SN-COOH. The oil-water mass ratio is 1:1. (a) Optical photos of conventional Pickering emulsion by SN-COOH. The concentration of SN-COOH from left to right: 0.1wt %, 0.25wt %, 0.5wt%, 0.75wt % and 1wt % respectively. (b-e) Microscopic images and particle size distribution of Pickering emulsions stabilized by SN-COOH. The concentration of SN-COOH: (b) 0.25 wt%, (c) 0.5 wt%, (d) 0.75 wt% and (e) 1 wt%.

Fig.S6 Optical, micrograph and particle size distribution of Pickering emulsion stabilized by SN and SN-COOH. The oil-water mass ratio is 1:1. "A-B" indicates that the concentrations of SN-COOH are A wt% and the concentrations of SN are B wt%. (a) 0.5-0.5; (b) 0.25-0.25; (c) 0.1-0.1; (d) 0.05-0.05; (e) 0.025-0.025; (f) 0.01-0.01.

Fig.S7 Particle size distribution of Pickering emulsion stabilized by Pd@SN-COOH and Pd@SN. The oil-water mass ratio is 1:1. The concentrations of Pd@SN-COOH and Pd@SN both are (a) 0.5wt%, (b) 0.25wt%, (c) 0.1wt%, (d) 0.05wt%, (e) 0.025wt% and (f) 0.01wt%.

Fig.S8 Test results of interfacial tension. (a) Interfacial tension between water and n-heptane; (b) 0.1 wt% Pd@SN aqueous solution and n-heptane; (c) interfacial tension between 0.1 wt% Pd@SN-COOH aqueous solution and n-heptane; (d) interfacial tension between 0.1 wt% Pd@SN and 0.1 wt% Pd@SN-COOH aqueous solution and n-heptane; (e) interfacial tension between 0.1 wt% SN aqueous solution and n-heptane; (f) interfacial tension between 0.1 wt% SN-COOH aqueous solution and n-heptane; (g) interfacial tension between 0.1 wt% SN and 0.1 wt% SN-COOH aqueous solution and n-heptane; (d) interfacial tension between 0.1 wt% SN-COOH aqueous solution and n-heptane; (f) interfacial tension between 0.1 wt% SN-COOH aqueous solution and n-heptane; (g) interfacial tension between 0.1 wt% SN and 0.1 wt% SN-COOH aqueous solution and n-heptane; (g)

Fig.9 Oil-water interfacial tension. From top to bottom: Interfacial tension between water and n-heptane; interfacial tension between 0.1 wt% SN aqueous solution and n-heptane; interfacial tension between 0.1 wt% SN-COOH aqueous solution and n-heptane; interfacial tension between 0.1 wt% SN and 0.1 wt% SN-COOH aqueous solution and n-heptane.

Fig.S10 Zeta potentials of 0.1wt% and 0.005wt% SN-COOH dispersed in water with different mass fractions of SN.

Fig.S11 The fluorescence emission spectra of FLSN and FLSN-COOH. The excitation wavelength is 360 nm.

Fluorescence labelling of SN

The fluorescence-labeled SN was prepared as previously reported¹. 2 g of SN was dispersed in 250 mL pure water. 1.759 g citric acid monohydrate and 35 mL KH-792 were dissolved in 500 mL pure water and stirred for 5 min. The nano-SiO₂ particle dispersion was added to the above mixed solution and transferred to a

polytetrafluoroethylene autoclave, which was then put in a vacuum oven at 180 °C for 3 h. After cooling to room temperature, the dried particles were washed with pure water and ethanol three times. The fluorescence-labeled SN was named FLSN.

Fluorescence labelling of and SN-COOH

FLSN was used to synthesize FLSN-COOH. The synthesis procedure was consistent with SN-COOH.

Fig.S12 Particle size of emulsion before and after alternately adding NaOH and HCl aqueous solutions (Pd@SN-COOH and Pd@SN both are 0.1wt%). The oil-water

mass ratio is 1:1.

Fig.S13 The standard curves of the relationship between hydrogen evolution amount and conductivity.

Fig.S14 (a) Kinetic study of hydrogen evolution of AB and hydrogenation reaction of 2,5-DHF in the typical reactor and typical reaction temperature. (b) Conversion of 2, 5-DHF and selectivity of tetrahydrofuran.

2,5-Dihydrofuran is prone to isomerization on Pd. The selectivity of the hydrogenation product tetrahydrofuran was 64.33%.

Fig.S15 Schematic Illustration for the conversion of styrene and 2,5-dihydrofuran.

Fig.S16 The particle size distribution of emulsion before and after reaction in the fifth cycle. The blue line represents before reaction and the pink line represents after

reaction.

Fig.S17 The selectivity of ethylbenzene and tetrahydrofuran in 5 cycles. Black represent demulsification by NaOH and red represent demulsification by centrifugation.

References

1. J. Jiang, S. Yu, W. Zhang, H. Zhang, Z. Cui, W. Xia and B. P. Binks, *Angew. Chem. Int. Ed.*, 2021, **60**, 11793-11798.