Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

1 Supporting information for

2

- 3 Title: Chiral mixed matrix membrane with (S,S)- Whelk-O®1 selector supported
- 4 on polyethersulfone/MCM-41

5 Author names and affiliations:

- 6 Priscila Vedovello^{1,2,*} (0000-0002-1934-0393)
- 7 Carla Fernandes^{2,3} (0000-0003-0940-9163)
- 8 Maria Elizabeth Tiritan^{2,3,4} (0000-0003-3320-730X)
- 9 Caio Marcio Paranhos¹ (0000-0002-2261-0585)

10

- 11 ¹CDMF, Polymer Laboratory, Department of Chemistry, Federal University of São
- 12 Carlos, 13565-905, São Carlos, São Paulo, Brazil
- 13 ²Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical
- 14 Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
- 15 ³Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), 4050-208,
- 16 Matosinhos, Portugal
- 17 ⁴TOXRUN Toxicology Research Unit, University Institute of Health Sciences, CESPU,
- 18 CRL, 4585-116 Gandra, Portugal

19

20 *Corresponding authors:

21 Maria Elizabeth Tiritan

22 Full postal address: Rua de Jorge Viterbo Ferreira, nº. 228, 4050-313 Porto – Portugal

- 23 Priscila Vedovello
- Full postal address: CDMF, Polymer Laboratory, Department of Chemistry, Federal
 University of São Carlos, 13565-905, São Carlos, São Paulo, Brazil
- 26

27

28

29

31 S1. Validation of the LC method for evaluation of the membranes

32

33 The validation of the analytical method was performed according to parameters
34 established by *International Conference on Harmonization of Technical Requirements*35 for Registration of Pharmaceuticals for Human Use (ICH)¹.

36

A. Validation with (R)-6MeX and (S)-6MeX enantiomers:

37 Seven standard solutions with different concentrations of (*R*)- 6MeX and (*S*)- 6MeX 38 enantiomers were prepared for calibration curve (Table S1). Calibration curves is 39 presented in Figure S1. The calibration curve was obtained by plotting the concentration 40 of the (*R*)- 6MeX and (*S*)- 6MeX enantiomers versus the area of the respective signals. 41 The value of the linear correlation coefficient (r^2) was 0.99778 and 0.99476, respectively.

Concentrations of $6MeX (\mu mol L^{-1})$	Area (S)- 6MeX	Area (<i>R</i>)- 6MeX
5	6.3347 ± 0.0310	7.0124 ± 0.0073
10	9.8670 ± 0.1066	11.3273 ± 0.1104
25	25.2259 ± 0.0219	29.6362 ± 0.1063
50	51.1752 ± 0.0577	61.0830 ± 0.5818
75	77.4371 ± 0.0890	74.9468 ± 0.1967
100	92.2077 ± 0.0512	113.1189 ± 0.0946
125	106.5526 ± 0.2277	123.5150 ± 5.0332

42 Table S1 – Concentrations of standard solutions and the values obtained for the areas.

44 The linearity of the method was determined from analytical curves presented above, each 45 showing 7 concentrations between 5 and 125 μ mol L⁻¹ of the 6MeX enantiomers diluted 46 in EtOH. Repeatability or precision was assessed using the calculation of relative standard 47 deviation (RSD):

$$RSD = \frac{SD}{MCD} x100$$
 Eq.1

48

- 49 where, SD is the standard deviation and MCD, the mean concentration determined.
- 50 Accuracy was determined through concentration values determined experimentally,
- 51 compared to theoretical concentration, according to equation 2.

$$Accuracy = \frac{MCD}{TC} x100$$
 Eq.2

53 where TC is the theoretical concentration.

To determine the intra-day and inter-day precision and accuracy, three standards solution (different from the concentration of calibration levels) *n* of the pure enantiomers in concentrations of 18, 65, and 85 μ mol mL⁻¹, in triplicate, were analyzed (Table S2 and Table S3). Accuracy was determined using experimentally determined concentration values, compared to the theoretical concentration (Table S3).

59 Table S2 - Relative standard deviation (RSD) values for the concentrations of the (R)-60 6MeX and (S)- 6MeX enantiomers determined for precision evaluation.

	TC (umal I - 1)	Day 1	Day 2	Day 3	Inter-days
		RSD (%)	RSD (%)	RSD (%)	RSD (%)
	18	0.4625	1.2674	0.6858	8.5365
(S)- 6MeX	65	0.0483	0.1335	1.3313	4.1730
	85	0.5691	0.0475	0.0823	7.8565
(R)- 6MeX	18	0.3395	0.4972	0.5022	3.7084
	65	0.2585	0.2031	0.6158	6.2415
	85	0.1212	0.1886	0.9161	3.4871

- 62 Table S3 Intra-day and inter-day accuracy assessment of (R)- 6MeX and (S)- 6MeX
- 63 enantiomers.

	TC	Day 1	Day 2	Day 3	Inter-days
	(µmol L ⁻¹)	% de Rec.	% de Rec.	% de Rec.	% de Rec.
	18	91.9806	86.5883	88.9849	89.1846
(S)- 6MeX	65	113.1920	106.6311	116.0136	111.9456
	85	97.4197	94.8712	97.4595	96.5835
(<i>R</i>)- 6MeX	18	116.4247	114.9777	116.1193	115.8406

65	94.5714	95.8898	94.5369	94.9994
85	95.0604	94.7815	114.8341	101.5587

The RSD values determined between days were all below the value recommended
by the Standard, which is a maximum of 10%, so the method can be considered accurate.
The accuracy varied from 89 a 117%, being within the specifications established by ICH.

68

69 **B.** Validation with (*R*)-NPX and (*S*)-NPX enantiomers:

70 Seven standard solutions with different concentrations of (*R*)-NPX and (*S*)-NPX 71 enantiomers were prepared for calibration curve (Table S4). Calibration curves is 72 presented in Figure S2. The calibration curve was obtained by plotting the concentration 73 of the (*R*)-NPX and (*S*)-NPX enantiomers versus the area of the respective signals. The 74 value of the linear correlation coefficient (r^2) was 0,99876 and 0,9946, respectively.

Concentrations of NPX (µmol L-1)	Area (S)-NPX	Area (R)-NPX
5	0.5624 ± 0.0072	0.4896 ± 0.0044
10	1.1229 ± 0.0051	1.2456 ± 0.0126
25	3.4171 ± 0.0050	3.0025 ± 0.0119
50	7.4636 ± 0.0055	6.6345 ± 0.0226
75	11.3792 ± 0.1080	10.7693 ± 0.0148
100	13.9502 ± 0.0355	13.6395 ± 0.0248
125	$17.2481 {\pm}\ 0.0152$	17.2430 ± 0.0157

75 Table S4 – Concentrations of standard solutions and the values obtained for the areas.

76

The linearity of the method was determined from analytical curves presented above, each showing 7 concentrations between 5 and 125 μ mol L⁻¹ of the NPX enantiomers diluted in EtOH. Repeatability or precision was assessed using the calculation of relative standard deviation (RSD). Accuracy was determined through concentration values determined experimentally, compared to theoretical concentration, according to equation 2. To determine the intra-day and inter-day precision and accuracy, three standards solution (different from the concentration of calibration levels) *n* of the pure enantiomers in concentrations of 18, 65, and 85 μ mol mL⁻¹, in triplicate, were analyzed (Table S5 and Table S6). Accuracy was determined using experimentally determined concentration values, compared to the theoretical concentration (Table S6).

87	Table S5 - Relative standard deviation (RSD) values for the concentrations of the (R) -
88	NPX and (S)-NPX enantiomers determined for precision evaluation.

	TC (µmol L ⁻¹)	Day 1 RSD (%)	Day 2 RSD (%)	Day 3 RSD (%)	Inter-days RSD (%)
	18	0.4011	0.4089	0.9184	1.2430
(S)-NPX	65	0.9576	0.0495	0.0381	7.4994
	85	0.1300	0.1372	0.0384	9.8909
(R)-NPX	18	1.3270	0.1759	0.2011	7.1999
	65	0.1719	0.1027	0.0204	6.1492
	85	0.2663	0.0317	0.0522	4.2578

89

90 Table S6 – Intra-day and inter-day accuracy assessment of (R)-NPX and (S)-NPX

91 enantiomers.

	TC (umol L ⁻¹)	Day 1 % de Rec.	Day 2 % de Rec.	Day 3 % de Rec.	Inter-days % de Rec.
	18	75.6418	75.5530	77.2349	76.1432
(S)-NPX	65	81.4935	92.0835	80.6976	84.7582
	85	82.7094	99.1206	85.3641	89.0647
	18	81.7122	91.5098	80.3566	84.5262
(R)-NPX	65	85.9899	94.3675	84.2131	88.1902
	85	86.0285	92.2024	85.4510	87.8939

92

93 The RSD values determined between days were all below the value recommended
94 by the Standard, which is a maximum of 10%, so the method can be considered accurate.
95 The accuracy varied from 75 a 99%, being within the specifications established by ICH.

98 Figure S1. The FTIR spectra of PES/MCM-41-(*S*,*S*)-Welk-O[®]1 1% (w/w); PES/MCM99 41-(*S*,*S*)-Welk-O[®]1 2.5% (w/w); PES/MCM-41-(*S*,*S*)-Welk-O[®]1 5% (w/w); PES pure;
100 MCM-41-(*S*,*S*)-Welk-O[®]1 and PVP.

The bands at 1080 cm⁻¹ and 808 cm⁻¹ can be attributed to the asymmetric and 101 symmetrical stretching, respectively, of the vibration of $v(Si-O-Si)^2$ and 466 cm⁻¹ 102 corresponds to angular deformation v(Si-O-Si)³. The band in the region around 3473 103 cm^{-1} corresponds to the stretching vibration of the v(O-H) bond of H₂O molecules 104 adsorbed on the silica matrix. At 1644 cm⁻¹ it corresponds to the absorption of the 105 106 carbonyl group of the secondary amide and the band in the region around 1550 cm⁻¹ 107 corresponds to the asymmetric axial deformation referring to the nitroaromatic groups (-108 NO_2) of the selector (S,S)-1-(3,5-dinitrobenzamido)-tetrahydrophenanthrene. This 109 proves the presence of the selector in the mesoporous material.

Figure S2. The DSC curves of PES/MCM-41-(*S*,*S*)-Welk-O®1 1% (w/w);
PES/MCM-41-(*S*,*S*)-Welk-O®1 2.5% (w/w); PES/MCM-41-(*S*,*S*)-Welk-O®1 5% (w/w);
PES pure.

It is observed that there was no variation in the Tg value for the pure PES membranes and with different contents of MCM-41-(*S*,*S*)-Welk-O®1 mesoporous material. Therefore, this event was observed in all of them with values ranging from 219.7 to 220.5 °C.

Figure S3. EDS images from SEM-EDS analyzes obtained of the mesoporous materials:
(a) MCM-41 and (c) MCM-41-(*S*,*S*)-Welk-O[®]1.

Figure S4. LC chromatograms of aliquots removed at certain time intervals during the filtration of (*R*)- 6MeX and (*S*)- 6MeX through the membrane (a) PES pure, (b) PES/MCM-41-(*S*,*S*)-Welk-O[®]1 1% (w/w), (c) PES/MCM-41-(*S*,*S*)-Welk-O[®]1 2.5% (w/w) and (d) PES/MCM-41-(*S*,*S*)-Welk-O[®]1 5% (w/w). Column (*S*,*S*)-Whelk-O[®]1 (25 cm, 4,6 mm i.d., 5 mm particle size, 100 Å pore size) from Regis[®] Technologies; Mobile phase ACN:MeOH (50:50 v/v); flow rate: 1mL min⁻¹; detection wavelength 254 nm.

131

Figure S5. LC chromatograms of aliquots removed at certain time intervals during the filtration of (*R*)-NPX and (*S*)-NPX through the membrane (a) PES pure, (b) PES/MCM-41-(*S*,*S*)-Welk-O[®]1 1% (w/w), (c) PES/MCM-41-(*S*,*S*)-Welk-O[®]1 2.5% (w/w) and (d) PES/MCM-41-(*S*,*S*)-Welk-O[®]1 5% (w/w). Column (*S*,*S*)-Whelk-O[®]1 (25 cm, 4,6 mm i.d., 5 mm particle size, 100 Å pore size) from Regis[®] Technologies; Mobile phase EtOH, 0.1%HAc; flow rate: 1mL min⁻¹; detection wavelength 254 nm.

138		
139		
140		