Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Atomic Ru cluster supported on CeO₂(110) for effective catalyzing

electrochemical N2 reduction reaction: insights from density functional theory

Heng Cao^a, Shulan Zhou^{a,*}

^aSchool of Chemistry and Chemical Engineering, Shandong University of Technology,

Zibo 255049, Shandong, China

*Corresponding authors. Email: <u>zhoushulan2009@126.com</u>

Table S1 Calculated binding energy of Ru_n (n=1-6, 10) on CeO₂(110), the optimized bond lengths and

Ru _n /CeO ₂ (110)	E_b / eV	Bond	Bond length/Å	Atom	Bader charge/ e
$Ru_1/CeO_2(110)$	-6.97	Ru-O1	1.962	Ru	0.93
		Ru-O2	2.025	01	-0.95
		Ru-O3	2.008	02	-0.53
		Ru-O4	1.988	03	-0.43
				04	-0.93
				05	-1.31
				06	-1.18
				Cel	2.42
				Ce2	0.52
				Ce3	2.34
				Ce4	2.10
Ru ₂ /CeO ₂	-8.83	Ru1-Ru2	2.239	Ru1	1.50
		Ru1-O1	1.861	Ru2	0.18
		Ru1-O2	1.782	01	-0.95
		Ru2-O3	1.876	02	-1.04
		Ru2-O4	1.799	03	-1.01
				04	-1.04
				05	-1.08
				06	-0.78
				Cel	1.79
				Ce2	0.93
				Ce3	1.67
Ru ₃ /CeO ₂	-9.27	Ru1-Ru2	2.511	Ru1	0.94
		Ru1-Ru3	2.339	Ru2	0.60
		Ru2-Ru3	2.224	Ru3	0.54
		Ru1-O1	1.899	01	-1.55
		Ru1-O2	1.790	02	-1.25
		Ru2-O3	1.991	03	-1.47
		Ru2-O4	2.013	04	-1.50
		Ru3-O5	1.812	05	-1.20
				06	-1.60
				07	-1.63
				Cel	2.79
				Ce2	2.98
				Ce3	2.61
Ru ₄ /CeO ₂	-10.29	Ru1-Ru2	2.223	Ru1	-0.34
		Ru1-Ru4	2.234	Ru2	0.44
		Ru2-Ru3	2.352	Ru3	1.27
		Ru3-Ru4	2.241	Ru4	0.82
		Ru2-O1	1.938	01	-0.91

Bader charge and the related donations of atoms are shown in Figure S3.

		Ru2-O2	1.938	O2	-1.06
		Ru3-O3	1.822	O3	-1.13
		Ru3-O4	1.864	O4	-0.96
		Ru4-O5	1.817	O5	-1.19
				O6	-1.21
				07	-1.19
				Cel	2.16
				Ce2	2.31
				Ce3	1.42
Ru ₅ /CeO ₂	-9.97	Ru1-Ru2	2.280	Ru1	0.41
		Ru1-Ru3	2.626	Ru2	0.23
		Ru1-Ru4	2.645	Ru3	0.49
		Ru1-Ru5	2.274	Ru4	0.11
		Ru2-Ru3	2.374	Ru5	0.05
		Ru2-Ru5	2.892	01	-0.85
		Ru3-Ru4	2.256	O2	-1.13
		Ru4-Ru5	2.389	O3	-1.26
		Ru2-O1	1.800	O4	-0.90
		Ru3-O2	1.926	05	-0.74
		Ru4-O3	1.912	O6	-1.16
		Ru5-O4	1.776	Cel	2.12
				Ce2	1.93
				Ce3	0.26
Ru ₆ /CeO ₂ -	10.47	Ru1-Ru2	2.365	Ru1	-0.18
		Ru1-Ru3	2.342	Ru2	1.0
		Ru1-Ru6	2.240	Ru3	0.68
		Ru2-Ru3	2.499	Ru4	-0.15
		Ru2-Ru5	2.269	Ru5	0.06
		Ru3-Ru4	2.270	Ru6	-0.09
		Ru4-Ru5	2.605	01	-0.94
		Ru4-Ru6	2.313	O2	-1.24
		Ru5-Ru6	2.356	03	-1.01
		Ru2-O1	1.949	O4	-1.07
		Ru2-O2	1.974	05	-0.95
		Ru3-O3	1.818	O6	-1.24
		Ru5-O4	2.019	O7	-1.38
		Ru5-O5	1.978	Cel	2.21
				Ce2	2.45
				Ce3	1.93
Ru_{10}/CeO_2 -	11.46	Ru1-Ru2	2.270	Ru1	-0.22
		Ru1-Ru5	2.379	Ru2	0.45
		Ru1-Ru6	2.303	Ru3	0.19
		Ru2-Ru3	2.502	Ru4	0.97
		Ru2-Ru7	2.233	Ru5	0.27

Ru3-Ru4	2.300	Ru6	0.02	
Ru3-Ru8	2.242	Ru7	-0.28	
Ru4-Ru5	2.341	Ru8	0.3	
Ru4-Ru9	2.312	Ru9	-0.24	
Ru5-Ru10	2.265	Ru10	0.31	
Ru6-Ru7	2.293	01	-0.98	
Ru6-Ru10	2.292	O2	-0.42	
Ru7-Ru8	2.415	03	-1.26	
Ru8-Ru9	2.298	O4	-0.72	
Ru9-Ru10	2.290	05	-1.18	
Ru1-O1	1.877	O6	-1.04	
Ru2-O3	1.971	Cel	2.36	
Ru3-O3	1.929	Ce2	-0.04	
Ru4-O5	1.797	Ce3	1.71	
Ru5-O6	1.901			

Table S2 Calculated N-Ru bond length (L_{N-Ru}) of N₂ adsorbed on Ru_n (n=1-6,10)/CeO₂(110) in end-on and side-on modes.

	$L_{ m N-Ru}$ / Å			
Ru _n /CeO ₂ (110)	End-on		Side	-on
	N-Ru	length	N-Ru	length
Ru ₁ /CeO ₂	N2-Ru1	1.863	N1-Ru1	2.201
			N2-Ru1	2.156
Ru ₂ /CeO ₂	N2-Ru1	1.976	N2-Ru1	2.048
			N2-Ru1	2.139
			N1-Ru2	2.062
			N2-Ru2	2.115
Ru ₃ /CeO ₂	N2-Ru3	1.951	N1-Ru3	1.982
			N2-Ru2	1.948
Ru ₄ /CeO ₂	N2-Ru4	1.953	N1-Ru1	2.012
			N2-Ru4	2.113
Ru ₅ /CeO ₂	N2-Ru1	1.950	N1-Ru2	1.993
			N2-Ru1	1.873
Ru ₆ /CeO ₂	N2-Ru6	1.974	N1-Ru4	2.023
			N2-Ru6	1.998
Ru ₁₀ /CeO ₂	N2-Ru8	1.950	N1-Ru8	2.221
			N2-Ru8	2.079

Species		Bader charge of N / e Bader charge of N /		ge of N / e	
gas N ₂		5.11		4.89	
		End-on		Side-on	
	Ru ₁ /CeO ₂	5.26	5.10	5.17	5.15
	Ru ₂ /CeO ₂	5.39	5.00	5.61	5.37
N_2 on	Ru ₃ /CeO ₂	5.57	4.97	5.46	5.36
Ru _n /CeO ₂ (110)	Ru ₄ /CeO ₂	5.40	5.06	5.38	5.31
	Ru ₅ /CeO ₂	5.73	4.75	5.51	5.37
	Ru ₆ /CeO ₂	5.42	5.00	5.31	5.38
	Ru_{10}/CeO_2	5.78	4.63	5.20	5.33

Table S3 Calculated Bader charge of N atom in the gas N_2 and the end-on and side on adsorbed N_2 on Ru_n (*n*=1-6, 10)/CeO₂(110).

Table S4 The Gibbs free energy change of N_2 ($\Delta G(*N_2)$) and H ($\Delta G(*H)$) adsorption on $Ru_n/CeO_2(110)$.

Ru _n /CeO ₂ (110)	$\Delta G(*N)$	ΔG(*H)/eV	
-	end on	side on	-
Ru ₁ /CeO ₂	-0.96	-0.35	-0.06
Ru ₂ /CeO ₂	0.30	0.77	-0.01
Ru ₃ /CeO ₂	-0.56	-0.22	-0.92
Ru ₄ /CeO ₂	-0.30	0.30	-0.24
Ru ₅ /CeO ₂	-0.28	0.12	-0.33
Ru ₆ /CeO ₂	-0.56	-0.03	-0.39
Ru ₁₀ /CeO ₂	-0.72	-0.25	-0.84

Figure S1. Configurations of Ru_n (*n*=2-6,10) cluster. The values in figure indicate the calculated total

energy in eV by DFT.

Figure S2. Possible location sites of $Ru_n(n=1-6,10)$ on $CeO_2(110)$. Color code: surface O: red; second

layer O: pink; Ce: yellow.

Figure S3. Top views of CeO₂(110) and Ru_n(n=1-6,10)/CeO₂(110). (a) CeO₂(110), (b) Ru₁/CeO₂(110),
(c) Ru₂/CeO₂(110), (d) Ru₃/CeO₂(110), (e) Ru₄/CeO₂(110), (f) Ru₅/CeO₂(110), (g) Ru₆/CeO₂(110), (h) Ru₁₀/CeO₂(110). Color scheme: oxygen: red (surface O), pink (third layer O), Ce: yellow, Ru: cyan.

Figure S4. Calculated differential charge density of $Ru_n(n=1-6,10)/CeO_2(110)$. The yellow and cyan regions represent the accumulation and consumption of electrons, respectively. Color code: O: red; Ce: yellow; Ru: cyan.

Figure S5. The top and side views of N₂ adsorbed at different site on $Ru_n(n=1-6,10)/CeO_2(110)$ with the values of adsorption energy (E_{ads} , unit in eV). Color code: O: red; Ce: yellow; Ru: cyan; N: blue.

Figure S6. Calculated differential charge density of N₂ adsorbed on Ru_n(*n*=1-6,10)/CeO₂(110) in endon and side-on modes. The yellow and cyan regions represent the accumulation and consumption of electrons, respectively. Color code: O: red; Ce: yellow; Ru: cyan; N: blue.

Figure S7. Scheme of possible associative reaction pathways of nitrogen reduction, i.e. the distal, alternating, enzymatic and mixed pathways.

Figure S8. The optimized geometries and energy profiles of NRR on Ru_n(n=1,2,4,10)/CeO₂(110) along enzymatic pathway. (a), (b) Ru₁/CeO₂(110); (c), (d) Ru₂/CeO₂(110); (e), (f) Ru₄/CeO₂(110); (g), (h)
Ru₁₀/CeO₂(110). Color code: surface O: red; second layer O: pink; Ce: yellow; Ru: cyan; N: blue; H:

Figure S9. Temperature and energy evolution of Ru₃/CeO₂(110) simulated by AIMD at 298 and 773 K,

respectively. (a) 298K; (b) 773K.