Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Supporting Information for

Hydroquinone colorimetric sensing based on Core-shell

structured CoFe₂O₄@N-GQDs@CeO₂ nanocomposites as oxidase

mimics

Xuefang Lei¹, Yujin Li¹, Peiqing Guo¹, Mingzhu Qiu¹, Rang Meng¹, Shaohui Li¹, Dongxia Zhang¹, Nali Chen¹, Xibin Zhou^{1,*}

1 Key Laboratory of Resource Environment and Sustainable Development of Oasis, College of Geography and Environment Science, Northwest Normal University, Lanzhou 730070, China

2 School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou730050, P.R China

E-mail address of Corresponding author: zhouxb@nwnu.edu.cn (Xibin Zhou).

Figure S1 (a) UV-visible spectrum of N-GQDs; (b) TEM image of N-GQDs. Inset is the size distribution of N-GQDs.

Figure S2 TEM images of (a) $CoFe_2O_4$, (b) $CoFe_2O_4$ @N-GQDs, (c) 5 $CoFe_2O_4$ @N-GQDs.

Figure S3 The CoFe₂O₄@N-GQDs@CeO₂-TMB system has the selectivity to detect HQ (40 μ M) at 10 times the potential interference.

Figure S4 Stability of the catalytic activity of CoFe₂O₄@N-GQDs@CeO₂ oxidase: (a) under optimal conditions; (b) the Yellow River water; (c) Tap water.

Figure S5 (a) Relativity activity (%) and (b) recovery (%) of the $CoFe_2O_4@N-GQDs@CeO_2$ within six cycles under the optimum conditions.

Method	Catalysts	Linear range(µM)	LOD(µM)	References
Colorimetric	Fe/Mn-N-C	0-100	0.216	[1]
Colorimetric	Pt/Cds	100-1000	45.5	[2]
Colorimetric	NiCo ₂ O ₄	5-110	2.7	[3]
Colorimetric	Co ₃ O ₄ -CeO ₂	2-200	0.789	[4]
Colorimetric	NiMnO ₃	1-85	0.68	[5]
Electrochemistry	Ce-MOF/CNTs	10-100	3.5	[6]
Electrochemistry	Pretreated PGE	10-70	0.59	[7]
Fluorometry	C-dots	0.1-50	0.1	[8]
Colorimetric	CoFe ₂ O ₄ @N- GQDs@CeO ₂	0.25-60	0.166	This woke

Table S1 Comparison of the sensing performance of other catalysts in the detection of hydroquinone.

[1] Bin Liu, Z. Wang, T. Wei, Z. Liu, J. Li, Bimetallic FeMn-N nanoparticles as nanocatalyst with dual enzyme-mimic activities for simultaneous colorimetric detection and degradation of hydroquinone, Journal of Environmental Chemical Engineering 11(3) (2023).

[2] X. Zhao, H. Lyu, X. Yao, C. Xu, Q. Liu, Z. Liu, X. Zhang, X. Zhang, Hydroquinone colorimetric sensing based on platinum deposited on CdS nanorods as peroxidase mimics, Microchimica Acta 187(10) (2020).

[3] Y. Song, M. Zhao, H. Li, X. Wang, Y. Cheng, L. Ding, S. Fan, S. Chen, Facile preparation of urchin-like $NiCo_2O_4$ microspheres as oxidase mimetic for colormetric assay of hydroquinone, Sensors and Actuators B: Chemical 255 (2018) 1927-1936.

[4] K. Hu, J. Li, Y. Han, D.H.L. Ng, N. Xing, Y. Lyu, A colorimetric detection strategy and micromotor-assisted photo-Fenton like degradation for hydroquinone based on the peroxidase-like activity of Co₃O₄–CeO₂ nanocages, Catalysis Science & Technology 12(23) (2022) 7161-7170.

[5] X. Zheng, Z. Liu, Q. Lian, H. Liu, L. Chen, L. Zhou, Y. Jiang, J. Gao, Preparation of Flower-like NiMnO₃ as Oxidase Mimetics for Colorimetric Detection of Hydroquinone, ACS Sustainable Chemistry & Engineering 9(38) (2021) 12766-12778.

[6] Huang H, Chen Y, Chen Z, et al. Electrochemical sensor based on Ce-MOF/carbon nanotube composite for the simultaneous discrimination of hydroquinone and catechol [J]. Journal of Hazardous Materials, 2021, 416: 125895.

[7] Kumar Naik T S S, Kesavan A V, Swamy B E K, et al. Low cost, trouble-free disposable pencil graphite electrode sensor for the simultaneous detection of hydroquinone and catechol [J]. Materials Chemistry and Physics, 2022, 278: 125663.

[8] Ni P, Dai H, Li Z, et al. Carbon dots based fluorescent sensor for sensitive determination of hydroquinone [J]. Talanta, 2015, 144: 258-62.