Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Supporting Information

Photodeposited Nickel loaded ZnCdS nanoparticles for

photocatalytic water splitting to hydrogen production

Xiaorun Huang, Changyan Guo^{*}, Yanan Niu, Yanqiu Ma, Jide Wang^{*} Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, School of Chemical Engineering and Technology, Xinjiang University, Urumqi, 830046, China.

E-mail addresses: gcyslw@xju.edu.cn (C. Guo), awangjd@sina.cn (J. Wang).

1 Experimental section	1
1.1 Characterization	1
1.2 Photocatalytic H ₂ production	1
1.3 Electrochemical testing	1
Fig. S1 SEM images of CdS-cube (a), CdS/Ni-cube (b), ZnCdS(TS) (c), ZnCdS(TS)/Ni-0.3	5H (d)
and ZnCdS(OS) (e) and ZnCdS(OS)/Ni (f).	3
Fig. S2 TGA text of different catalysts.	4
Fig. S3 XRD pattern of ZnCdS(TS)/Ni-1H after cycle experiment.	4
Fig. S4 The recyclability study of ZnCdS(TS)/Ni-1H	5
Fig. S5 Free radical capture experiment.	5
Fig. S6 Mott-Schottky plots of CdS-cube (a), CdS/Ni-cube (b), ZnCdS(TS) (c), ZnCdS(TS)/N	i-0.5H
(d), ZnCdS(OS)/Ni (e) and ZbCdS(OS)/Ni (f).	6
Table S1 Comparison of photocatalytic hydrogen production performance with other catalys	ts7
References	8

Content

1 Experimental section

1.1 Characterization

The crystal structures of the samples were analyzed by a Rigaku D/max-ga X-ray diffractometer (XRD) with a scan rate of 6° min⁻¹ and a 2θ range of 10° to 80° using Cu Kα radiation ($\lambda = 1.54178$ Å). X-ray photoelectron spectroscopy (XPS) measurements were performed on a Thermo Fisher Scientific XPS ESCALAB 250 Xi instrument which uses an Al Kα (1486.8 eV) X-ray source to determine the valence states of all elements. Field emission scanning electron microscopy (FESEM) was performed by a Hitachi SU8010 at an accelerating voltage of 5 kV in order to observe the morphology of the prepared samples. High resolution transmission electron microscopy (HRTEM) analysis was performed on a Hitachi 600TEM at an acceleration voltage of 200 kV to analyze the microstructure of the samples. UV-Vis measurements were performed on a Unico UV-4802S with barium sulfate as a reference.

1.2 Photocatalytic H₂ production

Photocatalyst (10mg) was added into a 20 mL photoreactor with circulating water. At the same time, 10 mL of Na₂S (0.1 mol/L) and Na₂SO₃ (0.1 mol/L) solution was added into the bottle and sealed. The air inside the bottle was replaced with argon for 10 min, and place under a xenon lamp with magnetic stirring. The light source was a 300 W xenon lamp with cutoff wavelength >420 nm. 100 µL of gas in the bottle was taken every hour to measure hydrogen by gas chromatography. Gas chromatography (Japan Shimadzu Corporation GC-14B) used a thermal conductivity detector (TCD) with a column of 5 Å molecular sieves (4 mm × 2 m). Argon was used as the carrier gas.

1.3 Electrochemical testing

All the electrochemical measurements were performed on a CHI660D electrochemical workstation (Shanghai Chenhua Instrument, Ltd. Shanghai, China) with standard three electrode system. The following methods was used to prepare working electrodes: 5 mg sample was put into a sample tube, and 980 μ L of absolute ethanol and 20 μ L of Nafion solution were added. The samples were dispersed by ultrasonic for 30 min and then dropped on the prepared 1×1 cm² FTO

(fluorine-doped tinoxide) glass. Mott-Schottky analysis was performed at potentials from -1 to 1 V. All tests were performed with Hg/Hg₂Cl₂ (saturated KCl) electrode as reference electrode, platinum sheet as counter electrode and 0.5 mol·L⁻¹ Na₂SO₄ as electrolytes at room temperature.

Fig. S1 SEM images of CdS-cube (a), CdS/Ni-cube (b), ZnCdS(TS) (c), ZnCdS(TS)/Ni-0.5H (d) and ZnCdS(OS) (e) and ZnCdS(OS)/Ni (f).

Fig. S2 TGA text of different catalysts.

Fig. S3 XRD pattern of ZnCdS(TS)/Ni-1H after cycle experiment.

Fig. S4 The recyclability study of ZnCdS(TS)/Ni-1H

Fig. S5 Free radical capture experiment.

Fig. S6 Mott-Schottky plots of CdS-cube (a), CdS/Ni-cube (b), ZnCdS(TS) (c), ZnCdS(TS)/Ni-0.5H (d), ZnCdS(OS)/Ni (e) and ZbCdS(OS)/Ni (f).

Photocatalysts	Cocatalyst	Reactant solution	Light	HER	Refs.
		(Sacrificial Agent)	source	activity	
ZnCdS/Ni		0.1 M Na $_2$ SO $_3$ and 0.1 M Na $_2$ S	300 W Xenon lamp with 420 nm cutoff filter	2641 μmol·g ⁻¹ ·h ⁻¹	This work
NiOx/B- TiO ₂ @CdS		0.1 M Na ₂ SO ₃ and 0.1 M Na ₂ S	300 W Xenon lamp with standard AM 1.5G filter	3.04 mmol·g ⁻¹ ·h ⁻ 1	[1]
TiO ₂	NiO	20 vol% Methanol	300 W Xenon lamp with standard AM 1.5G filter	228 µmol·g ⁻¹ ·h ⁻¹	[2]
ZnWO ₄ /CuO/T CPP		$40 \text{ mL } H_2O + 20$ mL TEOA	500 W Mercury lamp	1.84 mmol·g ⁻¹ ·h ⁻ 1	[3]
g-C ₃ N ₄	5 % wt Nb ₂ O ₅	10 vol% aq. TEOA	300 W Xenon lamp with 420 nm cutoff filter	2.07 ± 0.03 mmol·g ⁻¹ ·h ⁻	[4]
Co ₃ O ₄ /gC ₃ N ₄ /C oTiO ₃		15 vol% aq. TEOA	5 W LED Lamp	1971.7 µmol·g ⁻¹ ·h ⁻¹	[5]
Hollow OvCeO ₂ /CdS nanocage cubes		0.75 mol/L Na ₂ S and 1.05 mol/L Na ₂ SO ₃	300 W Xenon lamp with 420 nm cutoff filter	~12.6 mmol·g ⁻¹ ·h ⁻ 1	[6]
ZnP-Pz-PEO- COF	$[Mo_3S_{13}]^{2-}$	50 mM Ascorbic Acid and 15 vol% Lactic Acid	300 W Xenon lamp with 420 nm cutoff filter	1.38 mmol·g ⁻¹ ·h ⁻	[7]
Ag–AgMOM		TEOA	300 W Xenon lamp without any cutoff filter	3153 μmol·g ⁻¹ ·h ⁻¹	[8]
Ag/CN	1% wt. Pt	20 vol% aq. TEOA	300 W Xenon lamp with 400 nmcutoff filter	1688.9 mmol·g ⁻¹ ·h ⁻ 1	[9]

Table S1 Comparison of photocatalytic hydrogen production performance with other catalysts

References

- [1] Wu P, Ma Y, Yang X, Peng X, Liu C, Li B, et al. Bulk and surface dual-defects NiO_x/B-TiO₂@CdS photocatalyst for stable and effective photocatalytic hydrogen evolution. J Mater Sci 2022; 57:14450–63.
- [2] Yu C, Li M, Yang D, Pan K, Yang F, Xu Y, et al. NiO nanoparticles dotted TiO₂ nanosheets assembled nanotubes P-N heterojunctions for efficient interface charge separation and photocatalytic hydrogen evolution. Appl Surf Sci 2021; 568:150981.
- [3] Zheng D, Sun Z, Zhao H, Liu R, Wang X, Hu J, et al. Porphyrin sensitized ZnWO₄ nanosheets with CuO nanoparticles for photocatalytic hydrogen evolution. J Phys Chem Solids 2024; 184:111727.
- [4] Dong Q, Chen Z, Zhao B, Zhang Y, Lu Z, Wang X, et al. In situ fabrication of niobium pentoxide/graphitic carbon nitride type-II heterojunctions for enhanced photocatalytic hydrogen evolution reaction. J Colloid Interface Sci 2022; 608:1951–9.
- [5] Yang K, Zhang H, Liu T, Xiang D, Li Y, Jin Z. Tailoring of efficient electronextracting system: S-scheme g-C₃N₄/CoTiO₃ heterojunction modified with Co₃O₄ quantum dots for photocatalytic hydrogen evolution. J Electroanal Chem 2022;922: 116749.
- [6] Wei Y, Xue C, Jin L, Zhang J, Zhao Z, Feng L, et al. Defect-induced atomic-level intimate interface of a hollow Ov-CeO₂/CdS photocatalyst with a Z-scheme to boost hydrogen evolution. J Colloid Interface Sci 2023; 646:209–18.
- [7] Yin L, Zhao Y, Xing Y, Tan H, Lang Z, Ho W, et al. Structure-Property relationship in β-ketoenamine-based covalent organic frameworks for highly efficient photocatalytic hydrogen production. Chem Eng J 2021; 419:129984.
- [8] Liu Y, Liu C-H, Debnath T, Wang Y, Pohl D, Besteiro LV, et al. Silver nanoparticle enhanced metal-organic matrix with interface-engineering for efficient photocatalytic hydrogen evolution. Nat Commun 2023; 14:541.
- [9] Yan B, Song H, Yang G. A facile and green large-scale fabrication of single atom catalysts for high photocatalytic H₂ evolution activity. Chem Eng J 2022; 427:131795.