Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Persulfate promoted C-1 thiocyanation of imidazo[1,5-*a*]pyridines under visible light irradiation in water

Pallavi Saha,^a Samarpita Das,^a Harish K. Indurthi,^a Rohit Kumar,^a and Deepak K Sharma^{*a}

^aDepartment of Pharmaceutical Engg. and Tech., IIT-Banaras Hindu University, Varanasi, UP, 221005, email id: <u>deepak.phe@itbhu.ac.in</u>

Table of Contents

1.	General Information	.S2
2.	General Synthetic Procedure for Compounds 2a-2r and 3aa-3ca	S 3
3.	Spectral Data	S4-S11
4.	Gram Scale Synthesis of 2a	S12
5.	Conversion of thiocyanate to thioether (2ca) and thiocarbamate (2ea)	
	and their spectral data	S13-S14
6.	Control Experiment	S15-S17
7.	¹ H and ¹³ C NMR Spectra	S18-S67

General information

All chemicals were purchased from Sigma-Aldrich, TCI Chemicals, SRL Chemicals, and Avra, and used as received. Molychem silica gel (60-120 mesh) was used for column chromatography, and thin-layer chromatography was performed on Merck pre-coated silica gel 60-F254 plates. All other chemicals and solvents were obtained from commercial sources and purified using standard methods. The ¹H NMR and ¹³C NMR spectra were recorded on Bruker Advance spectrometers. Data are represented as follows: chemical shift, integration, multiplicity (br = broad, s = singlet, d = doublet, dd = doublet doublet, t = triplet, q = quartet, dd= doublet of doublet, dt= doublet of triplet, td= triplet of doublet and m = multiplet), and coupling constants in hertz (Hz).

General procedure for the synthesis of 2a-2r:

An oven-dried round bottom flask was charged with the corresponding 3-aryl/heteroaryl/alkyl substituted imidazo[1,5-*a*]pyridine (1 mmol), KSCN (2 equiv.), $K_2S_2O_8$ (1 equiv.) in 2 mL of H₂O. The reaction mixture was stirred at room temperature for 6 h under irradiation of blue LED light (24 W, 455 nm), at a distance of 10-12cm away from light source, in open air. After completion of reaction, the reaction mixture was extracted with ethyl acetate (15 mL × 3). The combined organic layers were washed with brine, dried over Na₂SO₄, and concentrated in vacuum. The residue was purified by column chromatography on silica gel using a solvent system of ethyl acetate/*n*-hexane to afford the desired product.

General procedure for the synthesis of 3aa-3ca:

An oven-dried round bottom flask was charged with the corresponding imidazoheterocycle (1 mmol), KSCN (2 equiv.), $K_2S_2O_8$ (1 equiv.) in 2 mL of H₂O. The reaction mixture was stirred at room temperature for 6 h under irradiation of blue LED light (24 W, 455 nm), at a distance of 10-12 cm away from light source, in open air. After completion of reaction, the reaction mixture was extracted with ethyl acetate (15 mL × 3). The combined organic layers were washed with brine, dried over Na₂SO₄, and concentrated in vacuum. The residue was purified by column chromatography on silica gel using a solvent system of ethyl acetate/*n*-hexane to afford the desired product.

Spectral Data

3-Phenyl-1-thiocyanatoimidazo[1,5-*a***]pyridine (2a):** ¹H NMR (CDCl₃, 600 MHz) δ (ppm) 8.30 (d, *J*= 7.2 Hz, 1H), 7.75 (d, *J*= 7.2 Hz, 2H), 7.70 (d, *J*= 9 Hz, 1H), 7.55-7.52 (m, 2H), 7.50-7.47 (m, 1H), 7.09-7.06 (m, 1H), 6.77 (t, *J*= 6.6 Hz, 1H); ¹³C NMR (CDCl₃, 150 MHz) δ (ppm) 140.2, 135.4, 129.8, 129.2, 128.7, 128.3, 123.4, 122.7, 114.5, 110.6, 108.0. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd. for C₁₄H₁₀N₃S: 252.0595; found: 252.0591.

1-Thiocyanato-3-(*p*-tolyl)imidazo[1,5-*a*]pyridine (2b): ¹H NMR (CDCl₃, 500 MHz) δ (ppm) 8.46-8.45 (m, 1H), 7.98 (d, J= 7.2 Hz, 2H), 7.78 (d, J= 9 Hz, 1H), 7.49-7.46 (m, 1H), 7.34 (d, J= 7.5 Hz, 2H), 7.15-7.12 (m, 1H), 7.14-7.12 (m, 1H), 2.46 (s, 1H); ¹³C NMR (CDCl₃, 125 MHz) δ (ppm) 153.2, 147.9,139.6, 129.5, 129.1, 128.7, 128.0, 124.4, 118.2, 114.3, 108.2, 94.3, 21.4. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd. for C₁₅H₁₂N₃S: 266.0752; found: 266.0744.

3-(4-Methoxyphenyl)-1-thiocyanatoimidazo[1,5-*a***]pyridine (2c**): ¹H NMR (CDCl₃, 600 MHz) δ (ppm) 8.27 (d, *J*=7.2 Hz, 1H), 7.73-7.70 (m, 2H), 7.09-7.08 (m, 3H), 6.777 (d, *J*=7.08 Hz, 1H), 3.91 (s, 3H); ¹³C NMR (CDCl₃, 150 MHz) δ (ppm) 160.7, 140.3, 135.2, 129.8, 123.1,

122.7, 121.1, 117.3, 114.6, 114.2, 110.6, 107.6, 55.5. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd. for C₁₅H₁₂ON₃S: 282.0701; found: 282.0696.

4-(1-Thiocyanatoimidazo[1,5-*a***]pyridin-3-yl)phenol (2d)**: ¹H NMR (CDCl₃, 600 MHz) δ (ppm) 8.16 (d, *J*= 7.2 Hz, 1H), 7.60 (d, *J*= 9.6 Hz, 1H), 7.18-7.13 (m, 2H), 7.05 (d, *J*= 7.8 Hz, 1H), 7.02-6.99 (m, 1H), 6.82-6.80 (M, 1H), 6.69-6.66 (M, 1H); ¹³C NMR (CDCl₃, 150 MHz) δ (ppm) 157.5, 140.4, 135.3, 130.3, 128.8, 123.9, 123.1, 119.6, 117.8, 117.1, 116.0, 114.7, 110.4, 107.1. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd. for C₁₄H₁₀N₃OS: 268.3140; found: 268.3136.

3-(4-Fluorophenyl)-1-thiocyanatoimidazo[1,5-*a***]pyridine (2e): ¹H NMR (CDCl₃, 500 MHz) \delta (ppm) 8.27 (d,** *J***= 7.5 Hz, 1H), 7.80-7.74 (m, 3H), 7.29-7.28 (m, 2H), 7.14-7.11 (m, 1H), 6.84-6.81 (m, 1H); ¹³C NMR (CDCl₃, 125 MHz) \delta (ppm) 163.4 (d,** *J***_{***F***-***C***}= 250 Hz), 139.3, 135.3, 130.4 (d,** *J***_{***F***-***C***}= 8.75 Hz), 124.9 4 (d,** *J***_{***F***-***C***}= 3.75 Hz), 123.3, 122.4, 117.4, 116.5 4 (d,** *J***_{***F***-***C***}= 22.5 Hz), 114.6, 110.4, 108.3; ¹⁹F NMR (CDCl₃, 471 MHz) \delta (ppm) -109.95 (m, 1F). HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd. for C₁₄H₈FN₃S: 269.2974; found: 269.2972.**

3-(4-Chlorophenyl)-1-thiocyanatoimidazo[1,5-*a***]pyridine (2f): ¹H NMR (CDCl₃, 600 MHz) δ (ppm) 8.19 (d,** *J***= 7.2 Hz, 1H), 7.67-7.64 (m, 3H), 7.45 (d,** *J***= 8.4 Hz, 2H), 7.05-7.02 (m, 1H), 6.74 (t,** *J***= 6.6 Hz, 1H); ¹³C NMR (CDCl₃, 150 MHz) δ (ppm) 139.1, 135.8, 135.5, 129.5,**

127.2, 123.5, 122.5, 117.5, 114.8, 110.4, 108.6. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd. for C₁₄H₉ClN₃S: 286.0200; found, 286.0199.

3-(3-Bromophenyl)-1-thiocyanatoimidazo[1,5-*a*]**pyridine** (**2g**): ¹H NMR (CDCl₃, 600 MHz) δ (ppm) 8.31 (d, *J*= 7.2 Hz, 1H), 7.94 (s, 1H), 7.75-7.71 (m, 2H), 7.63 (d, *J*= 7.8 Hz, 1H), 7.43 (t, *J*= 7.8 Hz, 1H), 7.14-7.11 (m, 1H), 6.84 (t, *J*= 6.6 Hz, 1H); ¹³C NMR (CDCl₃, 150 MHz) δ (ppm) 138.5, 135.5, 132.8, 131.2, 130.7, 130.6, 126.7, 123.6, 123.3, 122.5, 117.5, 114.9, 110.3, 108.8. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd. for C₁₄H₉BrN₃S: 329.9701; found: 329.9692.

1-Thiocyanato-3-(4-(trifluoromethyl)phenyl)imidazo[1,5-*a***]pyridine (2h): ¹H NMR (CDCl₃, 600 MHz) δ (ppm) 8.27 (d, J= 6.6 Hz, 1H), 7.87 (d, J= 7.8 Hz, 2H), 7.75 (d, J= 8.4 Hz, 2H), 7.71 (d, J= 9.6 Hz, 1H), 7.10-7.07 (m, 1H), 6.79 8.29 (t, J= 7.2 Hz, 1H), ¹³C NMR (CDCl₃, 150 MHz) δ (ppm) 138.6, 135.7, 132.3, 131.6, 131.4, 128.5, 126.2 (q, J_{F-C}= 4.5 Hz), 123.7, 122.4, 117.6, 115.1, 110.2, 109.3. ¹⁹F NMR (CDCl₃, 471 MHz) δ= -61.339 (s, 1F). HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd. for C₁₅H₉F₃N₃S: 320.3032; found: 335.3015.**

1-thiocyanato-3-(4-(trifluoromethoxy)phenyl)imidazo[1,5-*a***]pyridine (2i): ¹H NMR (CDCl₃, 600 MHz) δ (ppm) 8.29 (d,** *J***= 7.2 Hz, 1H), 7.83 (d,** *J***= 9 Hz, 2H), 7.75 (d,** *J***= 9 Hz, 1H), 7.41 (d,** *J***= 8.4 Hz, 1H), 7.14-7.11 (m, 1H), 6.83 (t,** *J***= 6.6 Hz, 1H); ¹³C NMR (CDCl₃, 150 MHz) δ (ppm) 150.0, 138.8, 135.5, 129.9, 127.4, 123.5, 122.4, 121.6, 120.4 (d,** *J***_{***F***-***C***}= 256.5 Hz), 117.5, 114.8, 110.3, 108.6; ¹⁹F NMR (CDCl₃, 471 MHz) \delta= -57.72 (s, 3F). HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd. for C₁₅H₉F₃N₃OS: 335.3042; found: 335.3038.**

3-(4-Nitrophenyl)-1-thiocyanatoimidazo[1,5-*a***]pyridine (2j): ¹H NMR (CDCl₃, 600 MHz) δ (ppm) 8.45-8.42 (m, 3H), 8.07-8.05 (m, 2H), 7.84 (d,** *J***= 9.6 Hz, 1H), 7.25-7.22 (m, 1H), 6.98-6.95 (m, 1H); ¹³C NMR (CDCl₃, 150 MHz,) δ (ppm) 147.9, 137.7, 136.0, 134.8, 128.7, 124.5, 124.1, 122.4, 117.8, 115.6, 110.3, 109.9. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd. for C₁₄H₉N₄O₂S: 297.0446; found 297.0418.**

3-(1-Thiocyanatoimidazo[1,5-*a***]pyridin-3-yl)benzonitrile (2k):** ¹H NMR (CDCl₃, 500 MHz) δ (ppm) 8.33 (dt, *J*= 7 Hz, 1Hz, 1H), 8.12-8.11 (m, 1H), 8.09-8.07 (m, 1H), 7.81-7.79 (m, 1H), 7.71 (td, *J*= 7 Hz, 1 Hz, 1H), 7.21-7.18 (m, 1H), 6.94-6.91 (m, 1H); ¹³C NMR (CDCl₃, 125 MHz,) δ (ppm) 137.6, 135.8, 132.9, 132.3, 131.4, 130.2, 123.9, 122.2, 117.9, 117.6, 115.4, 113.7, 110.1, 109.4. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd. for C₁₅H₉N₄S: 277.0548; found: 277.0547.

Methyl 4-(1-thiocyanatoimidazo[1,5-*a***]pyridin-3-yl)benzoate (2l):** ¹H NMR (DMSO-*d*₆, 600 MHz) δ (ppm) 8.71 (d, *J*= 7.2 Hz, 1H), 8.16-8.14 (m, 2H), 8.07-8.06 (m, 2H), 7.87 (d, *J*= 9 Hz, 1H), 7.34-7.31 (m, 1H), 7.06-7.04 (m, 1H), 3.92 (s, 3H); (d, *J*= 7.8 Hz, 1H); ¹³C NMR (DMSO-*d*₆, 150 MHz,) δ (ppm) 166.2, 143.0, 141.0, 138.7, 135.8, 133.4, 130.3, 128.6, 125.2, 124.5, 117.2, 115.8, 111.8, 52.8. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd. for C₁₆H₁₁N₃O₃S: 309.0572; found 309.0565.

3-(4-(Methylsulfonyl)phenyl)-1-thiocyanatoimidazo[**1**,**5**-*a*]**pyridine** (**2m**): ¹H NMR (CDCl₃, 600 MHz) δ (ppm) 8.31 (d, *J*= 7.2 Hz, 1H), 8.06 (d, *J*= 8.4 Hz, 2H), 7.96 (d, *J*= 8.4 Hz, 1H), 7.73 (d, *J*= 9 Hz, 1H), 7.13-7.10 (m, 1H), 6.85-6.83 (m, 1H); ¹³C NMR (CDCl₃, 150 MHz,) δ (ppm) 141.2, 138.0, 135.9, 134.0, 128.8, 128.4, 124.0, 122.4, 117.7, 115.5, 110.0, 109.9, 44.5. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd. for C₁₅H₁₂N₃O₂S₂: 330.4000; found 309.3996.

3-(Naphthalen-1-yl)-1-thiocyanatoimidazo[1,5-*a*]pyridine (2n):¹H NMR (CDCl₃, 600 MHz) δ (ppm) 8.01 (d, *J*= 7.8 Hz, 1H), 7.94 (d, *J*= 7.8 Hz, 1H), 7.75 (d, *J*= 9 Hz, 1H), 7.71 (t,

J= 8.4 Hz, 2H), 7.63-7.58 (m, 2H), 7.53 (t, *J*= 7.2 Hz, 1H), 7.47 (t, *J*= 7.2 Hz, 2H); (d, *J*= 7.8 Hz, 1H); ¹³C NMR (CDCl₃, 150 MHz,) δ (ppm)139.0, 135.1, 133.9, 131.5, 130.8, 129.0, 128.8, 127.5, 126.7, 125.6, 125.3, 125.0, 123.5, 123.3, 117.1, 114.2, 110.7, 107.7. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd. for C₁₈H₁₂N₃S: 302.0752; found: 302.0747.

3-(Furan-2-yl)-1-thiocyanatoimidazo[1,5-*a***]pyridine (20): ¹H NMR (CDCl₃, 600 MHz) δ (ppm) 8.77 (d,** *J***= 7.2 Hz, 1H), 7.70 (d,** *J***= 9 Hz, 1H), 7.61 (d,** *J***= 1.2 Hz, 1H), 7.12-7.09 (m, 2H), 6.87 (t,** *J***= 6.6 Hz, 1H), 6.6 (m, 1H); ¹³C NMR (CDCl₃, 150 MHz,) δ (ppm) 145.0, 142.9, 134.8, 132.2, 124.3, 123.5, 117.1, 114.9, 112.0, 110.2, 108.5. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd. for C₁₂H₈N₃OS: 242.2762; found: 242.2753.**

3-(5-Bromothiophen-2-yl)-1-thiocyanatoimidazo[**1**,**5**-*a*]**pyridine** (**2p**): ¹H NMR (CDCl₃, 600 MHz) δ (ppm) 8.35 (d, *J*= 7.2 Hz, 1H), 7.75 (d, *J*= 9.6 Hz, 1H), 7.3 (d, *J*= 4.2 Hz, 1H), 7.16 (d, *J*= 4.2 Hz, 1H), 7.15-7.12 (m, 1H), 6.90 (t, *J*= 7.2 Hz, 1H); ¹³C NMR (CDCl₃, 150 MHz) δ (ppm) 135.4, 133.7, 132.0, 130.7, 126.6, 123.5, 117.6, 115.3, 114.9, 110.1, 109.0. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd. for C₁₂H₆BrN₃OS: 336.2250; found: 242.2245.

3-(Pyridin-3-yl)-1-thiocyanatoimidazo[1,5-*a***]pyridine (2q): ¹H NMR (CDCl₃, 500 MHz) δ (ppm) 9.07 (s, 1H), 8.76 (d,** *J***= 4 Hz, 1H), 8.33 (d,** *J***= 7 Hz, 1H), 8.15 (dt,** *J***= 8 Hz, 2 Hz, 1H), 7.79 (d,** *J***= 9.5 Hz, 1H), 7.54-7.52 (m, 1H), 7.19-7.16 (m, 1H), 6.90-6.88 (m, 1H); ¹³C NMR (CDCl₃, 125 MHz) δ (ppm) 150.6, 148.7, 137.2, 136.0, 135.7, 125.3, 124.1, 123.8, 122.2, 117.6,**

115.2, 110.2, 109.3. HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd. for C₁₃H₈N₄S: 252.2950; found: 252.2947.

3-(*Tert*-butyl)-1-thiocyanatoimidazo[1,5-*a*]pyridine (2r): ¹H NMR (CDCl₃, 500 MHz) δ (ppm) 8.18 (d, *J*= 7.5 Hz, 1H), 7.67 (d, *J*= 9 Hz, 1H), 7.04-7.01 (m, 1H), 6.76-6.73 (m, 1H), 1.57 (s, 9H); ¹³C NMR (CDCl₃, 125 MHz) δ (ppm) 147.5, 135.9, 124.2, 122.0, 111.0, 105.0, 33.8, 28.0. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd. for C₁₂H₁₃N₃S: 231.3170; found: 231.3168.

2-Phenyl-3-thiocyanatoimidazo[1,2-*a***]pyridine (3aa):** ¹H NMR (CDCl₃, 500 MHz) δ (ppm) 8.47 (dt, *J* = 6.5 Hz,1Hz, 1H), 8.09-8.07 (m, 2H), 7.79 (d, *J* = 9 Hz, 1H), 7.57-7.54 (m, 2H), 7.51-7.47 (m, 2H), 7.15 (td, *J* = 6.5 Hz,1Hz, 1H); ¹³C NMR (CDCl₃, 125 MHz) δ (ppm) 153.1, 148.0, 132.0, 129.5, 128.8, 128.7, 128.0, 124.4, 118.3, 114.4, 108.1, 94.7. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd. for C₁₄H₁₀N₃S: 252.0595; found: 252.0591.

6-Phenyl-5-thiocyanatoimidazo[2,1-*b***]thiazole (3ba):** ¹H NMR (DMSO-*d*₆, 600 MHz) δ (ppm) 8.23 (d, *J*= 4 Hz, 1H), 8.00-7.98 (m, 2H), 7.58 (d, *J*= 4.5 Hz, 1H), 7.57-7.53 (m, 2H), 7.48-7.45 (m, 1H); ¹³C NMR (CDCl₃, 125 MHz) δ (ppm) 152.7, 152.2, 132.8, 129.3, 128.1, 127.9, 119.7, 116.6, 111.1, 90.1. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd. for C₁₂H₇N₃S₂: 257.3290; found: 257.3286.

7-Methoxy-2-phenyl-3-thiocyanatobenzo[*d*]**imidazo**[**2**,**1**-*b*]**thiazole** (**3ca**): ¹H NMR (CDCl₃, 500 MHz) δ (ppm) 8.39 (d, *J* = 9 Hz, 1H), 8.00-7.99 (m, 2H), 7.56-7.53 (m, 2H), 7.49-7.46 (m, 1H), 7.30 (d, *J* = 2.5 Hz, 1H), 7.16 (dd, *J* = 9 Hz, 2.5 Hz 1H), 3.93 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ (ppm) 157.8, 155.0, 131.9, 131.8, 129.2, 128.7, 128.3, 127.0, 114.5, 114.2, 108.9, 108.8, 97.7. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd. for C₁₇H₁₂N₃OS₂: 337.0344; found: 337.0341.

Gram Scale Synthesis

An oven-dried round bottom flask was charged with the 3-phenyl imidazo[1,5-*a*]pyridine (7.0 mmol, 1.35 gm), KSCN (2 equiv.), $K_2S_2O_8$ (1 equiv.) in 10 mL of H₂O. The reaction mixture was stirred at room temperature for 9 h under irradiation of blue LED light (24 W, 455 nm) in open air. The reaction mixture was kept at a distance of 2 cm from the light source for irradiation. After completion of reaction, the reaction mixture was extracted with ethyl acetate (15 mL × 3). The combined organic layers were washed with brine, dried over Na₂SO₄, and concentrated in vacuum. The residue was purified by column chromatography on silica gel to afford the desired product **2a** in 89% yield (Scheme 1).

Scheme 1: Gram-scale reaction.

^{*a*}**Reaction conditions:** 1 (7 mmol), KSCN (2 equiv.), $K_2S_2O_8$ (1 equiv.), H_2O (10 mL), 9 h, rt, open air, blue LED (24 W, 455 nm). ^{*b*}Isolated yield.

Conversion of thiocyanated imidazo[1,5-*a*]pyridines to thioether and thiocarbamate: General procedure for the synthesis of 2ca:

To an oven-dried round bottom flask **2c** (1 equiv., 0.2 mmol) was added in 2 mL of water. Iodobenzene (1 equiv.), $CuCl_2 \cdot 2H_2O$ (0.1 equiv.), 1,10-Phenanthroline (0.1 equiv.), Cs_2CO_3 (2 equiv.), (nBu)₄NF (0.2 equiv.) was further added and the entire reaction mixture was subjected to uniform stirring at 100°C for 12 h. After completion of reaction, the reaction mixture was extracted with ethyl acetate (15 mL × 3). The combined organic layers were washed with brine, dried over Na₂SO₄, and concentrated in vacuum. The residue was purified by column chromatography on silica gel using a solvent system of ethyl acetate/*n*-hexane to afford the desired product.

General procedure for the synthesis of 2ea:

To an oven-dried round bottom flask, **2e** (1 equiv., 0.2 mmol) was added in 2 mL of DCM. To it 0.1 mL of H₂SO₄ (18 M) was added and the entire reaction mixture was subjected to uniform stirring for 4 h in ice bath. On competition of the reaction, 10 mL of DCM was added to it for further dilution and the entire reaction mixture was washed with saturated aqueous NaHCO₃ solution (5 mL × 3), brine (5 mL × 2), dried over Na₂SO₄, and concentrated in vacuum. The residue was purified by column chromatography on silica gel using a solvent system of ethyl acetate/*n*hexane to afford the desired product.

Scheme 2: Application of C-1 thiocynated of imidazo[1,5-*a*]pyridines. *^a*Reaction conditions: (i) 2c (1 equiv.), Iodobenzene (1 equiv.), CuCl₂•2H₂O (0.1 equiv.), 1,10-Phenanthroline (0.1 equiv.), Cs₂CO₃ (2 equiv.), (nBu)₄NF (0.2 equiv.), H₂O (5 mL). (ii) 2e (1 equiv., 0.2 mmol), H₂SO₄ (0.1mL, 18 M), CH₂Cl₂(2 mL), 0°C, 4h. ^{*b*}Isolated yield.

S-(3-(4-fluorophenyl)imidazo[1,5-*a*]pyridin-1-yl) carbamothioate (2ea): ¹H NMR (CDCl₃, 600 MHz) δ (ppm) 8.06 (d, J= 4 Hz, 1H), 7.70-7.68 (m, 2H), 7.14 (t, J= 9 Hz, 3H), 6.60-6.58 (m, 1H), 6.51 (t, J= 6.6 Hz, 1H); ¹³C NMR (CDCl₃, 150 MHz) δ (ppm) 163.1(d, J_{F-C} = 248.5 Hz), 138.4, 135.9, 130.2 (d, J_{F-C} = 7.5 Hz), 125.7 (d, J_{F-C} = 3 Hz), 124.1, 121.8, 121.3, 118.6, 116.2 (d, J_{F-C} = 21 Hz), 113.9; ¹⁹F NMR (CDCl₃, 471 MHz) δ (ppm) -107.870 (m, 1F). HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd. for C₁₄H₁₁FN₃OS: 288.3204; found: 288.3200.

3-(4-Methoxyphenyl)-1-(phenylthio)imidazo[1,5-*a***]pyridine (2ca):** ¹H NMR (CDCl₃, 600 MHz) δ (ppm) 8.17 (d, *J*= 7.2 Hz, 1H), 7.68 (d, *J*= 8.4 Hz, 1H), 7.55 (d, *J*= 9 Hz, 1H), 7.14-7.09 (m, 4H), 7.02-6.97 (m, 3H), 6.78-6.75 (m, 1H), 6.57 (t, *J*= 7.2 Hz, 1H), 3.80 (s, 3H); ¹³C NMR (CDCl₃, 150 MHz) δ (ppm) 160.3, 139.3, 138.5, 134.9, 130.6, 129.7, 128.8, 127.0, 125.4, 122.0, 120.8, 119.5, 118.4, 114.4, 113.7, 55.4. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd. for C₂₀H₁₆N₂OS: 332.4210; found: 332.4208.

Control Experiments

TEMPO addition in the general procedure:

An oven-dried round bottom flask was charged with the 3-phenylimidazo[1,5-*a*]pyridine (1 mmol), KSCN (2 equiv.), $K_2S_2O_8$ (1 equiv.), TEMPO (4 equiv.) in 2 mL of H₂O. The reaction mixture was stirred at room temperature for 6 h under irradiation of blue LED light (24 W, 455 nm) at a distance of 2 cm away from light source, in open air (Scheme 2a).

BHT addition in the general procedure:

An oven-dried round bottom flask was charged with 3-phenylimidazo[1,5-*a*]pyridine (1 mmol), KSCN (2 equiv.), $K_2S_2O_8$ (1 equiv.), BHT (4 equiv.) in 2 mL of H₂O. The reaction mixture was stirred at room temperature for 6 h under irradiation of blue LED light (24 W, 455 nm), at a distance of 2 cm away from light source, in open air (Scheme 2b).

Reaction in darkness:

An oven-dried round bottom flask was charged with 3-phenylimidazo[1,5-*a*]pyridine (1 mmol), KSCN (2 equiv.), $K_2S_2O_8$ (1 equiv.), in 2 mL of H₂O. The reaction mixture was stirred at room temperature for 3 h in open air and in absence of any light source *i.e*, in darkness (Scheme 2c).

Light on-off experiment:

Six standard oven-dried round bottom flask were charged with 3-phenyl imidazo[1,5*a*]pyridine (1 mmol), KSCN (2 equiv.), $K_2S_2O_8$ (1 equiv.), in 2 mL of H₂O. The mixtures were stirred uniformly under irradiated of blue LEDs (approximately 2 cm away from the light source) at room temperature. After 1hr LEDs were turned off, and one round bottom flask was removed from the irradiation setup for analysis. The remaining five reactions were stirred in the absence of light for another 1 hr. After 2 h, one reaction was removed for analysis, and the LED lamps were turned back on to irradiate the remaining four reaction mixtures. After an additional 1 h of irradiation, the blue LEDs were turned off, and one round bottom flask was removed for analysis. The remaining three reactions were stirred in the absence of light for an additional 1 h. After 4 h another reaction was removed for analysis, and the LEDs were turned back on to irradiate the remaining two reaction mixtures. After 5 h, the LEDs were turned off, and one round bottom flask was removed for analysis. The remaining one reaction was stirred in the absence of light for an additional 1 h, then, it was analyzed. The yield of each reaction was determined by column chromatography at the respective time intervals (Fig. 1).

"Reaction conditions: (a) **1** (1 mmol,), KSCN (2 equiv.), $K_2S_2O_8$ (1 equiv.), TEMPO (4 equiv.), blue LED (24 W, 455 nm), H_2O (2 mL), 6 h, rt, open air; (b) **1** (1 mmol), KSCN (2 equiv.), $K_2S_2O_8$ (1 equiv.), BHT (4 equiv.), blue LED (24 W, 455 nm), H_2O (2 mL), 6 h, rt, open air; (c) **1** (1 mmol), KSCN (2 equiv.), $K_2S_2O_8$ (1 equiv.), H2O (2 mL), 6 h, rt, open air.

Figure 1: Light on-off experiment.

8.307
8.295
8.295
7.734
7.742
7.742
7.742
7.734
7.734
7.734
7.734
7.734
7.734
7.734
7.734
7.734
7.734
7.734
7.734
7.734
7.734
7.734
7.734
7.734
7.734
7.734
7.734
7.734
7.734
7.734
7.734
7.734
7.734
7.734
7.734
7.734
7.734
7.734
7.734
7.734
7.734
7.734
7.734
7.734
7.734
7.734
7.734
7.734
7.734
7.734
7.734
7.734
7.734
7.734
7.734
7.734
7.734
7.734
7.734
7.734
7.734
7.734
7.734
7.734
7.734
7.734
7.734
7.734
7.734
7.734
7.734
7.734
7.734
7.734
7.734
7.744
7.744
7.744
7.744
7.744
7.744
7.744
7.744
7.744
7.744
7.744
7.744
7.744
7.744
7.744
7.744
7.744
7.744
7.744
7.744
7.744
7.744
7.744
7.744
7.744
7.744
7.744
7.744
7.744
7.744
7.744
7.744
7.744
7.744
7.744
7.744
7.744
7.744
7.744
7.744
7.744
7.744
7.744
7.744
7.744
7.744
7.744
7.744
7.744
7.744
7.744
7.744
7.744
7.744
7.744
7.744
7.744
7.744
7.744
7.744
7.744
<

33	69 33 33 33 33 33 33 33 33 33 33 33 33 33	23 25 25 29
ç.	5, 5, 5, 8, 8, 8, 7, 7,	6.6
		<u> </u>
		$\langle \langle \rangle \rangle$

SCN

f1 (ppm) -10

¹H NMR (CDCl_{3,} 500 MHz)

-109.3 -109.5 -109.7 -109.9 -110.1 -110.3 -110.5 -110.7 -110.9 -111.1 -111.3 -111.5 -111.7 f1 (ppm)

<8.201 <8.189 7.667 7.651 7.637 7.458 7.444 ~7.037 ~7.033 ~6.733 ~6.732

					1	· · · ·	- I	· · · ·	1	1	· · ·	· 1		· · ·	· 1		· · · ·		· · · ·		· · · · ·	
20	00	19)	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
												f1 (ppm)									

-58 -62 f1 (ppm) -72 -74 -76 -80 -42 -48 -50 -52 -54 -56 -60 -64 -66 -68 -70 -78 -82 -84 -44 -46

-40 -41 -42 -43 -44 -45 -46 -47 -48 -49 -50 -51 -52 -53 -54 -55 -56 -57 -58 -59 -60 -61 -62 -63 -64 -65 -66 -67 -68 -69 -70 -71 f1 (ppm)

¹H NMR (CDCl₃, 600 MHz)

SCN

Ν

124.17 122.04 117.55 113.17 113.17

f1 (ppm)

5.0 f1 (ppm)

-106.5 f1 (ppm) -103.0 -103.5 -105.0 -102.5 -104.0 -104.5 -105.5 -106.0 -107.0 -107.5 -108.0 -108.5 -109.0 -109.5 -110.0 -110.5

----3.804

-7,679 -7,563 -7,563 -7,548 -7,142 -7,119 -7,119 -7,119 -7,119 -7,119 -7,107 -7,119 -7,107 -7,006 -6,004 -6,007 -6

8.176
8.164

----55.42

¹³C NMR (CDCl₃, 150 MHz)

139.34 139.34 139.49 139.46 129.76 128.77 127.04 127.04 122.03 119.55 1114.46 1114.46