Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Electronic Supplementary Material (ESI)

The Nature of π -Hole Spodium Bonds in the HgLCl₂ (L = pyrrole,

pyrazole, imidazole, pyridine, pyridazine, and pyrimidine) Complexes:

from Noncovalent to Covalent

Rong Tian^a, Yanli Zeng^{a,b}, Xiaoyan Li^{a,b}, Xueying Zhang*^{a,b}

^aCollege of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, 050024,

China

^bHebei Key Laboratory of Inorganic Nano-materials, Hebei Normal University, Shijiazhuang, 050024, China

Table of contents:

	page
Figure S1	2
Table S1	2
Figure S2	3
Figure S3	3
Figure S4	4
Table S2	5
Table S3	6
Table S4	7
Table S5	8

Fig. S1 MEP graphs on the 0.001 a.u. molecular isosurfaces of ZH_3 and CH_2Y (Z = N, P, As, and Sb; Y = O, S, Se, and Te).

Table S1 NOCV orbital energy (E_{tot} , E_{orb} , in kcal/mol) and charge transfer (CT, in e)in the complexes HgLCl₂···NH₃.

complex	$E_{\rm tot}$	NOCV pair	$E_{\rm orb}$	$E_{\rm orb}/E_{\rm tot}$	СТ
	6 56(a)	1(α)	-5.27	0.80	0.140
1 111	-0.30(a)	2(α)	-0.43	0.07	0.024
INH3	(55(0)	1(β)	-5.27	0.80	0.140
	-6.55(p)	2(β)	-0.43	0.07	0.024
3 NHI	14.24	1	-11.41	0.80	0.291
$2 \cdots NH_3$	-14.24	2	-0.97	0.07	0.050
3 ···NH ₃	-13.07	1	-10.49	0.80	0.278
		2	-0.71	0.05	0.049
$4 \cdots \mathrm{NH}_3$	-12.93	1	-10.41	0.81	0.277
		2	-0.9	0.07	0.047
		1	-13.08	0.72	0.317
5 …NH ₃	-18.12	2	-0.99	0.05	0.051
		3	-2.08	0.11	0.104
6 …NH ₃	12.04	1	-10.48	0.80	0.280
	-13.04	2	-0.55	0.04	0.050

Fig. S2 Isosurface of NOCV pair density map of the complexes $HgLCl_2\cdots NH_3$. (L = pyrrole 1, imidazole 3, pyridine 4, and pyrimidine 6)

Fig. S3 Molecular graphs of the complexes $4 \cdots YCH_2$ and $4 \cdots ZH_3$.

Fig. S4 Schematic diagrams of main orbital interactions for the complexes.

Table S2 Binding energies (in kcal/mol), binding distance (in Å), and topological parameters (in a.u.) at the bond critical points for $HgLCl_2\cdots ZH_3$ complexes (L= pyrrole 1, pyrazole 2, imidazole 3, pyridazine 5, and pyrimidine 6; Z = N, P, As, and Sb)

Complex	ΔE	d	BCP	$ ho_{ m b}$	$ abla^2 ho$	G_{b}	V_{b}	H_{b}	$-G_{\rm b}/V_{\rm b}$
$1 \cdots \mathrm{NH}_3$	-8.30	2.563	Hg…N	0.0420	0.1321	0.0361	-0.0392	-0.0031	0.9210
$1 \cdots PH_3$	-3.88	3.165	Нg…Р	0.0215	0.0472	0.0123	-0.0128	-0.0005	0.9604
$1{\cdots} AsH_3$	-3.81	3.448	Hg…As	0.0133	0.0307	0.0071	-0.0066	0.0005	1.0812
$1{\cdots}SbH_3$	-3.90	3.758	Hg…Sb	0.0092	0.0198	0.0044	-0.0039	0.0005	1.1396
$2 \cdots NH_3$	-9.23	2.543	Hg…N	0.0437	0.1379	0.0380	-0.0415	-0.0035	0.9158
$2 \cdots PH_3$	-4.39	3.083	Hg…P	0.0252	0.0543	0.0147	-0.0158	-0.0011	0.9291
$2 \cdots AsH_3$	-4.24	3.391	Hg…As	0.0149	0.0340	0.0081	-0.0077	0.0004	1.0514
$2 \cdots \text{SbH}_3$	-4.23	3.641	Hg…Sb	0.0115	0.0240	0.0056	-0.0052	0.0004	1.0768
$3 \cdots \mathbf{NH}_3$	-8.14	2.561	Hg…N	0.0421	0.1325	0.0362	-0.0394	-0.0031	0.9208
$3 \cdots \mathbf{PH}_3$	-3.81	3.176	Hg…P	0.0209	0.0461	0.0119	-0.0124	-0.0004	0.9657
3 ···AsH ₃	-3.78	3.445	Hg…As	0.0133	0.0308	0.0072	-0.0066	0.0005	1.0814
3 ···SbH ₃	-4.05	3.708	Hg…Sb	0.0099	0.0214	0.0048	-0.0043	0.0005	1.1201
$5 \cdots NH_3$	-9.76	2.518	Hg…N	0.0461	0.1445	0.0402	-0.0443	-0.0041	0.9075
		2.238	$N{\cdots}H$	0.0151	0.0537	0.0111	-0.0087	0.0024	1.2721
$5\cdots PH_3$	-4.32	3.072	Нg…Р	0.0255	0.0540	0.0147	-0.0160	-0.0012	0.9228
		3.036	N····H	0.0043	0.0151	0.0029	-0.0020	0.0009	1.4672
$5 \cdots AsH_3$	-4.14	3.369	Hg…As	0.0154	0.0348	0.0084	-0.0080	0.0003	1.0427
		3.184	N····H	0.0035	0.0119	0.0022	-0.0014	0.0008	1.5365
$5\cdots$ SbH ₃	-4.15	3.675	Hg…Sb	0.0110	0.0228	0.0053	-0.0048	0.0004	1.0909
6 …NH ₃	-8.77	2.571	Hg…N	0.0413	0.1293	0.0353	-0.0383	-0.0030	0.9222
6 …PH ₃	-4.21	3.159	Нg…Р	0.0220	0.0481	0.0126	-0.0132	-0.0006	0.9566
6 ···AsH ₃	-4.15	3.401	Hg…As	0.0148	0.0337	0.0080	-0.0076	0.0004	1.0547
6 SbH ₃	-3.99	3.680	Hg…Sb	0.0108	0.0226	0.0052	-0.0048	0.0004	1.0934

Table S3 Binding energies (in kcal/mol), binding distance (in Å), and topological parameters (in a.u.) at the bond critical points for $HgLCl_2\cdots YCH_2$ complexes (L= pyrrole 1, pyrazole 2, imidazole 3, pyridazine 5, and pyrimidine 6; Y = O, S, Se, and Te)

Complex	ΔE	d	BCP	$ ho_{ m b}$	$ abla^2 ho$	G_{b}	$V_{\rm b}$	$H_{\rm b}$	$-G_{\rm b}/V_{\rm b}$
1 OCH ₂	-5.06	2.846	Нg…O	0.0194	0.0723	0.0168	-0.0156	0.0013	1.0809
		2.760	Cl···H	0.0094	0.0302	0.0062	-0.0048	0.0014	1.2802
$1{\cdots}\mathrm{SCH}_2$	-7.08	3.024	Hg⋯S	0.0276	0.0653	0.0177	-0.0190	-0.0013	0.9293
		2.609	Cl···H	0.0119	0.0379	0.0078	-0.0060	0.0017	1.2840
$1 \cdots SeCH_2$	-7.81	3.085	Hg…Se	0.0282	0.0585	0.0164	-0.0182	-0.0018	0.9017
		2.603	Cl···H	0.0119	0.0380	0.0078	-0.0060	0.0017	1.2908
$1 \cdots TeCH_2$	-8.44	3.152	Hg…Te	0.0309	0.0527	0.0160	-0.0189	-0.0028	0.8494
		2.618	Cl···H	0.0115	0.0367	0.0074	-0.0057	0.0017	1.2999
$2 \cdots OCH_2$	-5.62	2.809	Hg…O	0.0210	0.0785	0.0185	-0.0173	0.0012	1.0666
		2.759	Cl···H	0.0094	0.0299	0.0061	-0.0048	0.0014	1.2840
$2 \cdots \mathrm{SCH}_2$	-7.19	2.985	Hg⋯S	0.0296	0.0699	0.0192	-0.0210	-0.0017	0.9170
		2.634	Cl···H	0.0114	0.0364	0.0074	-0.0058	0.0017	1.2880
$2 \cdots SeCH_2$	-8.03	3.046	Hg…Se	0.0303	0.0626	0.0178	-0.0200	-0.0022	0.8910
		2.630	Cl···H	0.0113	0.0363	0.0074	-0.0057	0.0017	1.2952
$2 \cdots \text{TeCH}_2$	-8.89	3.109	Hg…Te	0.0333	0.0560	0.0174	-0.0209	-0.0034	0.8360
		2.644	Cl···H	0.0110	0.0351	0.0071	-0.0055	0.0017	1.3038
$3 \cdots \mathrm{OCH}_2$	-4.72	2.845	Hg…O	0.0194	0.0724	0.0168	-0.0156	0.0013	1.0812
		2.752	Cl···H	0.0096	0.0306	0.0063	-0.0049	0.0014	1.2770
$3 \cdots \mathrm{SCH}_2$	-6.86	3.025	$Hg\cdots S$	0.0274	0.0652	0.0176	-0.0189	-0.0013	0.9310
		2.611	Cl····H	0.0119	0.0378	0.0077	-0.0060	0.0017	1.2833
$3 \cdots \mathrm{SeCH}_2$	-7.59	3.088	Hg…Se	0.0280	0.0583	0.0163	-0.0180	-0.0017	0.9040
		2.605	Cl····H	0.0119	0.0379	0.0077	-0.0060	0.0017	1.2901
$3 \cdots \text{TeCH}_2$	-8.23	3.161	Hg…Te	0.0304	0.0523	0.0158	-0.0185	-0.0027	0.8542
		2.624	Cl····H	0.0114	0.0362	0.0074	-0.0057	0.0017	1.3004
$5{\cdots}\mathrm{OCH}_2$	-4.72	2.875	Нg…O	0.0183	0.0679	0.0157	-0.0144	0.0013	1.0910
		2.792	Cl····H	0.0090	0.0292	0.0060	-0.0047	0.0013	1.2830
$5{\cdots}\mathrm{SCH}_2$	-7.04	2.994	$Hg\cdots S$	0.0291	0.0687	0.0188	-0.0204	-0.0016	0.9203
		2.626	Cl···H	0.0115	0.0366	0.0075	-0.0058	0.0017	1.2882
$5 \cdots SeCH_2$	-7.97	3.045	Hg…Se	0.0303	0.0624	0.0178	-0.0200	-0.0022	0.8911
		2.639	Cl····H	0.0111	0.0354	0.0072	-0.0055	0.0017	1.2997
$5 \cdots \mathrm{TeCH}_2$	-9.14	3.097	Hg…Te	0.0340	0.0565	0.0177	-0.0214	-0.0036	0.8304
		2.695	Cl····H	0.0099	0.0316	0.0064	-0.0049	0.0015	1.3148
		3.384	N…Te	0.0096	0.0258	0.0055	-0.0045	0.0010	1.2106
6 OCH₂	-5.28	2.833	Hg…O	0.0199	0.0743	0.0174	-0.0161	0.0012	1.0761

		2.782	Cl···H	0.0091	0.0292	0.0060	-0.0047	0.0013	1.2847
$6{\cdots}SCH_2$	-7.32	3.025	$\mathrm{Hg}\mathrm{\cdots}\mathrm{S}$	0.0276	0.0651	0.0176	-0.0190	-0.0014	0.9284
		2.622	Cl···H	0.0116	0.0371	0.0076	-0.0059	0.0017	1.2876
$6 \cdots \mathbf{SeCH}_2$	-8.09	3.087	Hg…Se	0.0282	0.0582	0.0164	-0.0182	-0.0018	0.9008
		2.618	Cl···H	0.0116	0.0370	0.0075	-0.0058	0.0017	1.2948
$6 \cdots TeCH_2$	-8.76	3.163	Hg…Te	0.0305	0.0518	0.0157	-0.0184	-0.0027	0.8512
		2.636	Cl····H	0.0111	0.0355	0.0072	-0.0055	0.0017	1.3046

Table S4 Major NBO results for the complexes $HgLCl_2\cdots ZH_3(L=pyrrole 1, pyrazole 2, imidazole 3, pyridazine 5, and pyrimidine 6; <math>Z = N$, P, As, and Sb) (energy, in kcal/mol, charge, in e)

Complex	Donor NBO	Acceptor NBO	$E^{(2)}$	$Q_{ m CT}$	WBI(Hg···Z)	
1NII	LP(N)	$p_Z^*(Hg)$	8.9	0 1040	0.19	
1NH ₃	LP(N)	$p_Z^*(Hg)$	10.9	0.1040	0.18	
1. DII	LP(P)	$p_Z^*(Hg)$	6.5	0 0779	0.16	
I PH ₃	LP(P)	$p_Z^*(Hg)$	5.8	0.0778	0.10	
1 A a U	LP(As)	$p_Z^*(Hg)$	4.7	0.0201	0.09	
1···А\$П ₃	LP(As)	$p_Z^*(Hg)$	4.7	0.0391		
$1{\cdots}SbH_3$	LP(Sb)	$p_Z^*(Hg)$	3.0	0.0112	0.07	
	LP(Sb)	$p_Z^*(Hg)$	2.9	0.0115	0.07	
$2 \cdots NH_3$	LP(N)	$p_{\rm Z}$ *(Hg)	25.0	0.1085	0.19	
$2 \cdots PH_3$	LP(P)	$p_Z^*(Hg)$	20.5	0.0981	0.19	
$2 \cdots AsH_3$	LP(As)	$p_Z^*(Hg)$	8.0	0.0477	0.11	
$2 \cdots SbH_3$	LP(Sb)	$p_Z^*(Hg)$	6.0	0.0387	0.09	
$3 \cdots \mathrm{NH}_3$	LP(N)	$p_{\rm Z}$ *(Hg)	19.6	0.1034	0.18	
$3 \cdots \mathbf{PH}_3$	LP(P)	$p_Z^*(Hg)$	12.7	0.0723	0.15	
$3{\cdots} AsH_3$	LP(As)	$p_Z^*(Hg)$	9.3	0.0194	0.09	
$\pmb{3}{\cdots}SbH_3$	LP(Sb)	$p_{\rm Z}$ *(Hg)	5.7	0.0287	0.07	
$5{\cdots}\mathrm{NH}_3$	LP(N)	$p_Z^*(Hg)$	36.5	0.1070	0.20	
$5\cdots PH_3$	LP(P)	$p_{\rm Z}$ *(Hg)	25.1	0.0918	0.19	
$5{\cdots} AsH_3$	LP(As)	$p_{\rm Z}$ *(Hg)	7.8	0.0488	0.11	
${\bf 5}{\cdots}SbH_3$	LP(Sb)	$p_Z^*(Hg)$	6.0	0.0367	0.09	
$6 \cdots NH_3$	LP(N)	$p_{\rm Z}$ *(Hg)	28.3	0.1024	0.18	
6 …PH ₃	LP(P)	$p_{\rm Z}$ *(Hg)	19.0	0.0828	0.16	
$\pmb{6}{\cdots}AsH_3$	LP(As)	$p_Z^*(Hg)$	7.2	0.0506	0.11	
6 ···SbH ₃	LP(Sb)	$p_{\rm Z}$ *(Hg)	6.4	0.03682	0.09	

Table S5 Major NBO results for the complexes $HgLCl_2\cdots YCH_2$ (L= pyrrole 1, pyrazole 2, imidazole 3, pyridazine 5, and pyrimidine 6; Y = O, S, Se, and Te) (energy, in kcal/mol, charge, in e)

Complex	Donor NBO	Acceptor NBO	$E^{(2)}$	$Q_{ m CT}$	WBI(Hg…Y)
1	LP(O)	<i>p</i> _Z *(Hg)	3.2	0.0221	0.06
1 ¹⁰ OCH ₂	LP(O)	$p_Z^*(Hg)$	2.7	0.0331	0.00
1SCH.	LP(S)	$p_Z^*(Hg)$	15.5	0 1238	0.21
1 SCH ₂	LP(S)	$p_Z^*(Hg)$	15.7	0.1258	0.21
$1 \cdots SeCH_2$	-	-	-	-	0.26
$1 \cdots \text{TeCH}_2$	-	-	-	-	0.35
$2 \cdots OCH_2$	LP(O)	$p_Z^*(Hg)$	6.9	0.0365	0.07
$2 \cdots \mathrm{SCH}_2$	LP(S)	$p_Z^*(Hg)$	33.9	0.1358	0.23
$2 \cdots \text{SeCH}_2$	LP(Se)	$p_Z^*(Hg)$	43.2	0.1677	0.28
$2 \cdots \text{TeCH}_2$	LP(Te)	$p_Z^*(Hg)$	59.1	0.2406	0.38
$3 \cdots \mathrm{OCH}_2$	LP(O)	$p_Z^*(Hg)$	6.6	0.0332	0.06
$3 \cdots \mathrm{SCH}_2$	LP(S)	$p_Z^*(Hg)$	30.2	0.1219	0.21
$3 \cdots \mathbf{SeCH}_2$	LP(Se)	$p_Z^*(Hg)$	38.8	0.1551	0.25
$3 \cdots \text{TeCH}_2$	-	-	-	-	0.34
$5{\cdots}\text{OCH}_2$	LP(O)	$p_Z^*(Hg)$	5.3	0.0305	0.06
$5{\cdots}\mathrm{SCH}_2$	LP(S)	$p_Z^*(Hg)$	29.4	0.1290	0.22
${\bf 5}{\cdots}SeCH_2$	LP(Se)	$p_Z^*(Hg)$	34.9	0.1593	0.26
$5 \cdots TeCH_2$	LP(Te)	$p_Z^*(Hg)$	38.5	0.2244	0.36
$\pmb{6} \cdots OCH_2$	LP(O)	$p_Z^*(Hg)$	6.1	0.0346	0.07
$6^{\dots}SCH_2$	LP(S)	$p_Z^*(Hg)$	28.6	0.1249	0.21
6 SeCH ₂	LP(Se)	$p_Z^*(Hg)$	33.6	0.1540	0.25
6 TeCH ₂	LP(Te)	$p_{\rm Z}$ *(Hg)	37.6	0.2175	0.34

The symbol '-' indicates that the complex is regarded as a single fragment by NBO analysis.