1

Utility of silver nanoparticles embedded on covalent organic framework as a highly active catalyst for carboxylative cyclization with CO₂: a sustainable route for production of tetronic acids and oxazolidinones

Dip Kumar Nandi,^a Najirul Haque,^a Surajit Biswas ^a, Nasir A. Siddiqui,^b Aslam Khan ^c, and Sk Manirul Islam^{*a}

^aDepartment of Chemistry, University of Kalyani, Kalyani, Nadia, 741235, W.B., India.

^bDepartment of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia

^cKing Abdullah Institite for Nanotechnology, King Saud University, Riyadh, 11451, Saudi Arabia

Materials

All chemicals were purchased from commercially available sources and used as received without further purification. Solvents were distilled and dried through standard methods before use.

Characterization Techniques

A D8 Advance SWAX diffractometer from Bruker-AXS utilizing a constant current (40 mA) and voltage (40 kV) was used to obtain the powder XRD pattern of the Ag@TFPNDA-COF catalyst. The XRD machine was calibrated with silicon sample utilizing Ni-filtered Cu K α radiation (λ =0.15406 nm). On a Perkin–Elmer FTIR 783 spectrophotometer the Fourier transform infrared (FTIR) spectra of the catalysts were recorded from 400 to 4000 cm⁻¹ using KBr pellets. Scanning electron microscope (SEM) (ZEISS EVO40, England) equipped with EDX facility was used to measure surface morphology of the Ag@TFPNDA-COF. BET surface area and porosity of these materials were estimated from the respective N₂ sorption isotherms at 77 K by using a Quantachrome Instruments Autosorb-1C surface area analyzer. The samples were activated at 403 K under high vacuum for 12 h before the N₂ adsorption–desorption analysis. TEM images were recorded using FEI Tecnai G2 F20 X-TWIN TEM at an accelerating voltage of 200 kV. HR-TEM, 5 mg of the AgNPs@TzTa-POP catalyst was dispersed into

absolute EtOH under the application of sonication for 30 min, followed by the sample coating on a carbon coated copper TEM grid and dried in air. All spectra were taken at 400 MHz for ¹H NMR. Using Bruker DPX-400 in CDCl₃ instrument with TMS as internal standard the products was confirmed by 1H spectroscopy.

Figure S1: FT-IR spectrum of reused Ag@TFPNDA-COF

Figure S2: FE-SEM picture of reused Ag@TFPNDA-COF material after 5th run.

Figure S3: FE-SEM picture of reused Ag@TFPNDA-COF material after 5th run.

1. NMR data table of Oxazolidinone derivatives^{1, 2}

1a: ¹H NMR data of 3-benzyl-4-methylene-1-oxa-3-azaspiro[4.5]decan-2-one

1b: ¹H NMR data of 4-methylene-3-phenyl-1-oxa-3-azaspiro[4.5]decan-2-one

1c: ¹H NMR data of 5,5-dimethyl-4-methylene-3-phenyloxazolidin-2-one

1d: ¹H NMR data of 3-benzyl-5,5-dimethyl-4-methyleneoxazolidin-2-one

1e: ¹H NMR data of 3-(4-methoxybenzyl)-5,5-dimethyl-4-methyleneoxazolidin-2-one

1f: ¹H NMR data of 4-methylene-3-(4-nitrophenyl)-1-oxa-3-azaspiro[4.5]decan-2-one

2. NMR data table of Propargyl Alcohols^{3, 4}

2a: ¹H NMR data of 2-methyl-4-phenylbut-3-yn-2-ol

2c: ¹H NMR data of 3-(4-methoxyphenyl)prop-2-yn-1-ol

2d: ¹H NMR data of 1-((4-methoxyphenyl)ethynyl)cyclohexan-1-ol

3. NMR data table of Tetronic acids^{5, 6}

За	O OH OH	4-hydroxy 3-(4-methoxyphenyl)-1-oxaspiro[4.5]dec-3-en-2-one ¹ H NMR (400 MHz, CDCl ₃): δ (in ppm) 1.067- 1.824 (m, 10H), 3.578 (s, 3H), 7.083 (d, <i>J</i> = 7.2 Hz, 2H), 7.550 (d, <i>J</i> = 8.8Hz, 2H), 11.539 (s, 1H)
3b	ОН	4-hydroxy-3-(4-methoxyphenyl)furan-2(5H)-one ¹ H NMR (400 MHz, CDCl ₃): δ (in ppm) 3.294 (s, 3H), 3.795 (s, 2H), 6.688 (d, <i>J</i> = 6.8 Hz, 2H), 7.560 (d, <i>J</i> = 6.8 Hz, 2H), 11.831 (s, 1H)
3с	O OH	4-hydroxy-5,5-dimethylfuran-2(5H)-one ¹ H NMR (400 MHz, CDCl ₃): δ (in ppm) 2.057 (s, 6H), 5.430 (s, 1H), 11.294 (s, 1H)

3d	O O O O O O O O O O O O O O O O O O O	4-hydroxy-5,5-dimethyl-3-phenylfuran-2(5H)-one ¹ H NMR (400 MHz, CDCl ₃): δ (in ppm) 1.693 (s, 6H), 7.267 (d, <i>J</i> = 4Hz, 2H), 7.337 (t, <i>J</i> = 8Hz, 2H), 7.533 (d, <i>J</i> = 8.4Hz, 1H), 11.112 (s, 1H)
3e	O O O H	4-hydroxy-5-methyl-3,5-diphenylfuran-2(5H)-one ¹ H NMR (400 MHz, CDCl ₃): δ (in ppm) 3.254 (s, 3H), 7.255-7.342 (m, 1H), 7.359-7.462 (m, 7H), 7.477-7.623 (m, 2H), 10.521 (s, 1H)

3a: ¹H NMR data of 4-hydroxy 3-(4-methoxyphenyl)-1-oxaspiro[4.5]dec-3-en-2-one

3b: ¹H NMR data of 4-hydroxy-3-(4-methoxyphenyl)furan-2(5H)-one

3c: ¹H NMR data of 4-hydroxy-5,5-dimethylfuran-2(5H)-one

3d: ¹H NMR data of 4-hydroxy-5,5-dimethyl-3-phenylfuran-2(5H)-one

3e: ¹H NMR data of 4-hydroxy-5-methyl-3,5-diphenylfuran-2(5H)-one

References

- 1. S. Ghosh, S. Riyajuddin, S. Sarkar, K. Ghosh and S. M. Islam, *ChemNanoMat*, 2020, **6**, 160-172.
- 2. N. Haque, S. Biswas, S. Ghosh, A. H. Chowdhury, A. Khan and S. M. Islam, *ACS Applied Nano Materials*, 2021, **4**, 7663-7674.
- 3. L. Ye, W. He and L. Zhang, *Journal of the American Chemical Society*, 2010, **132**, 8550-8551.
- 4. C. Kelly, *Chemspider Synthetic Pages, Royal Society of Chemistry*, 2011, DOI: 10.1039/SP507.
- 5. G. Shen, W.-J. Zhou, X.-B. Zhang, G.-M. Cao, Z. Zhang, J.-H. Ye, L.-L. Liao, J. Li and D.-G. Yu, *Chemical Communications*, 2018, **54**, 5610-5613.
- 6. A. Manchoju and S. V. Pansare, *Organic Letters*, 2016, **18**, 5952-5955.