Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Supporting Information

Li Vacancy-Induced Enhanced Ionic Conductivity in Li₄B₇O₁₂Cl for All-solid-state Li-ion Battery

Shaowei Wang¹, Zesen Gao¹, Futing Sun¹, Yan Yang,¹ Lang Tao,¹ Yunluo Wang¹, Zhiqian Yu², Jianghua Wu⁴, Jingshan Hou⁴, Zhanqiang Liu³, Hucheng Song², and Haijie Chen^{1,*}

¹State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Institute of Functional Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China ²National Laboratory of Solid-State Microstructures, School of Electronics Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, People's Republic of China ³Department of Materials Chemistry, Huzhou University, Huzhou 313000, People's Republic of China ⁴School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai, 201418, China

Figure S1. (a) The SEM image of $Li_4B_7O_{12}Cl$ solid state electrolyte. (b) The SEM image of $Li_{3.6}Mg_{0.2}B_7O_{12}Cl$ solid state electrolyte. (c) The TEM image of $Li_4B_7O_{12}Cl$ solid state electrolyte. (d) The TEM image of $Li_{3.6}Mg_{0.2}B_7O_{12}Cl$ solid state electrolyte.

Figure S2. (a) XPS full spectrum of $Li_{3.6}Mg_{0.2}B_7O_{12}Cl$ (LMBOC). (b) Li 1s XPS spectra of $Li_{3.6}Mg_{0.2}B_7O_{12}Cl$. (c) B 1s XPS spectra of $Li_{3.6}Mg_{0.2}B_7O_{12}Cl$. (d) O 1s XPS spectra of $Li_{3.6}Mg_{0.2}B_7O_{12}Cl$. (e) Cl 2p XPS spectra of $Li_{3.6}Mg_{0.2}B_7O_{12}Cl$.

Figure S3. (a) The SEM image of $Li_4B_7O_{12}Cl$. (b-c) The corresponding elements EDS mappings of $Li_4B_7O_{12}Cl$ electrolyte (O and Cl). (d) The corresponding EDS spectrum at the indicated area and the results of EDS analysis of $Li_4B_7O_{12}Cl$.

Figure S4. (a) The SEM image of $Li_{3.9}Mg_{0.05}B_7O_{12}Cl$ and the corresponding elements EDS mappings of $Li_{3.9}Mg_{0.05}B_7O_{12}Cl$ electrolyte (Mg, O, and Cl). (b) The SEM image of $Li_{3.8}Mg_{0.1}B_7O_{12}Cl$ and the corresponding elements EDS mappings of $Li_{3.8}Mg_{0.1}B_7O_{12}Cl$ electrolyte (Mg, O, and Cl). (c) The SEM image of $Li_{3.7}Mg_{0.15}B_7O_{12}Cl$ and the corresponding elements EDS mappings of $Li_{3.7}Mg_{0.15}B_7O_{12}Cl$ electrolyte (Mg, O, and Cl).

Figure S5. (a) Arrhenius diagram of Li_{3.9}Mg_{0.05}B₇O₁₂Cl based on temperature and electrochemical impedance spectroscopy. (b) Arrhenius diagram of Li_{3.8}Mg_{0.1}B₇O₁₂Cl based on temperature and electrochemical impedance spectroscopy. (c) Arrhenius diagram of Li_{3.7}Mg_{0.15}B₇O₁₂Cl based on temperature and electrochemical impedance spectroscopy.

Figure S6. Chronoamperometry measurements for the $Li_{4-2x}Mg_xB_7O_{12}Cl$ electrolytesbased lithium symmetric batteries ((a) x = 0.05, (c) x = 0.1, and (e) x = 0.15)). Nyquist impedance plots of the $Li_{4-2x}Mg_xB_7O_{12}Cl$ electrolytes before and after polarization ((b) x = 0.05, (d) x = 0.1, and (f) x = 0.15)).

Figure S7. The equivalent circuit for fitting the EIS spectra of the $\text{Li} | \text{Li}_{4-2x}\text{Mg}_x\text{B}_7\text{O}_{12}\text{Cl}$

| Li cell.

Figure S8. The galvanostatic charge–discharge cycle measurement of the $(Li|Li_4B_7O_{12}Cl|Li)$ cell at a current density of 0.01 mA/cm² at room temperature.

Figure S9. (a) The galvanostatic charge-discharge cycle measurement of the (Li) Li_{3.6}Mg_{0.2}B₇O₁₂Cl |Li) cell at a current density of 0.03 mA/cm² at room temperature. (b) The galvanostatic charge-discharge cycle measurement of the (Li Li_{3.6}Mg_{0.2}B₇O₁₂Cl |Li) cell at a current density of 0.06 mA/cm² at room temperature. galvanostatic charge-discharge cycle measurement (c) The of the (Li $Li_{3.6}Mg_{0.2}B_7O_{12}Cl$ |Li) cell at a current density of 1 mA/cm² at room temperature.

Atom	Wyakoff	Ato	mic coordin	ates	0.00	U
Atom	vv yckoli -	х	У	Z	000.	
Cl	8b	0.25	0.25	0.25	1	1
В	24d	0.25	0	0	1	1
В	32e	0.10036	0.10036	0.10036	1	1
0	96h	0.02252	0.09813	0.18172	1	1
Li	32e	0.8708	0.8708	0.8708	0.25	1
Li	24c	0	0.25	0.25	1	1

Table S1. Structural data for $Li_4B_7O_{12}Cl$.

Atom	Wyakoff -	Atomic coordinates			0.00	TI
Atom	vv yckoll –	Х	У	Z	000.	U
Cl	8b	0.25	0.25	0.25	1	0.418
В	24d	0.25	0	0	1	0.406
В	32e	0.0986	0.0986	0.0986	1	0.391
0	96h	0.0231	0.096	0.1807	1	0.398
Li	32e	0.844	0.844	0.844	0.25	0.75
Li	24c	0	0.25	0.25	0.8	0.548
Mg	24c	0	0.25	0.25	0.2	0.548
Mg	32e	0.844	0.844	0.844	0.25	0.75

 $\label{eq:constraint} \textbf{Table S2.} Structural data for Li_{3.6}Mg_{0.2}B_7O_{12}Cl \mbox{ obtained from Rietveld refinement.}$

Table S3. The result of ICP-OES measurement.

Sample	Mg content (%, ICP)	Mg precursors content (%)
Li _{3.6} Mg _{0.2} B ₇ O ₁₂ Cl	0.198	0.2

 $Mg \ Content = \frac{Mg \ Concentration \ measured \ by \ ICP}{Li \ Concentration \ measured \ by \ ICP} \times 100\%$

	Atom r	atio
Material	Mg	Cl
Li _{3.9} Mg _{0.05} B ₇ O ₁₂ Cl	4.82	95.18
Li _{3.8} Mg _{0.1} B ₇ O ₁₂ Cl	9.4	90.6
.i _{3.7} Mg _{0.15} B ₇ O ₁₂ Cl	13.2	86.8

Table S4. The results of EDS mappings of $Li_{4-2x}Mg_xB_7O_{12}Cl$ (x = 0.05, 0.10, 0.15) electrolyte (Mg, and Cl).