Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Supporting Information

Efficient synthesis of 1-Azakenpaullone, a selective inhibitor of glycogen synthase kinase-3β for cellular regeneration

Yujiao Xu,‡^{ab} Jianguang Liu,‡^b Gengwu Li,^{ab} Hua Wu,^c Xinghan Du,^c Tianhua Ma,^c Dan Liu,^a Shibing Tang*^{ab}

^a Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, P.R.China.

E-mail: tang_shibing@gibh.ac.cn

^b State Key Laboratory of Respiratory Disease, Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, P.R.China

^c School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China..

Table of Contents

General Information	2
Experimental Procedures and Characterization Data	2
Chemically Induced Totipotent Stem Cells (ciTotiSCs) Induced From Mouse Embryonic	2
Stem Cells (mESCs)1	0
Biological activity of 1-Akp and analogues in inducing ciTotiSCs from mESCs1	0
References1	1
¹ H NMR, ¹³ C NMR, MS and HRMS Spectra1	1

General Information

All commercially available reagents and solvents (ACS grade) were purchased from commercial sources and used without further purification. Reactions were monitored by thin-layer chromatography (TLC) carried out on Merck silica gel 60 F-254 thin layer plates using UV light for visualization and an ethanolic solution of phosphomolybdic acid under heat or powdered iodine for developing. Flash column chromatography was generally performed on silica gel (200-300 mesh). LC-MS analyses were performed on the Agilent 1200 HPLC/MCD electrospray mass spectrometer in positive/negative ion mode. The scan range was 100-1000d. The yields refer to chromatographically homogeneous materials. The ¹H and ¹³C NMR spectra were recorded on a Bruker AV-500 or AV-400 spectrometer using CDCl₃ or DMSO- d_{δ} as solvent. The chemical shifts (δ) are reported in ppm and coupling constants (J) in Hz. The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet. HRMS (High-resolution mass spectra) were conducted by a an Applied Biosystems Q-STAR Elite ESI-LC-MS/MS mass spectrometer under the condition of electrospray ionization (ESI). Compound purity was determined by reverse-phase high-performance liquid chromatography (HPLC) with 5% solvent A (H₂O) and 95% solvent B (MeOH) as eluents. The purity of all the final compounds was determined by HPLC to be >95%.

Experimental Procedures and Characterization Data

General Procedure for the synthesis of 2a-2k:

N-(2-bromopyridin-3-yl)-2-(1H-indol-3-yl)acetamide (2b)

2-(1H-indol-3-yl) acetic acid (176 mg, 1.005 mmol) was dissolved in DCM (10 ml) containing a catalytic amount of DMF. Then and oxalyl chloride (255 mg, 2.010 mmol) was added slowly into the mixture at 0 °C. The resulting mixture was stirred at room temperature for 30 minutes, and evaporated to obtain the intermediate 2-(1H-indol-3-yl) acetyl chloride.

Bromopyridin-3-amine (348 mg, 2.010 mmol) was dissolved in THF (15 ml) and added CS_2CO_3 (655 mg, 2.010 mmol). A DCM solution of 2-(1H-indol-3-yl)acetyl chloride (15 ml) was added slowly onto the mixture at 0 °C. The resulting mixture was stirred at 0 °C for 4 hours. The resulting mixture was then quenched by water and extracted by DCM for three times. The organic layer was collected and washed with saturated NaHCO₃ solution and saturated NaCl solution for once. Then the organic layer was concentrated under vacuum and added a small amount of DCM

for recrystallization. The precipitated solid was collected by filtration and dried to afford the product **2b** (277 mg, 84% yield). ¹H NMR (500 MHz, CDCl₃) δ 8.66 (d, *J* = 8.1 Hz, 1H, Ar-H), 8.37 (s, 1H, Ar-H), 8.03 (s, 1H, Ar-H), 7.96 (d, *J* = 4.1 Hz, 1H, Ar-H), 7.58 (d, *J* = 7.9 Hz, 1H, Ar-H), 7.39 (d, *J* = 8.1 Hz, 1H, Ar-H), 7.24 (d, *J* = 4.9 Hz, 1H, Ar-H), 7.22 (d, *J* = 6.7 Hz, 1H, Ar-H), 7.20–7.16 (m, 1H, Ar-H), 7.14 (t, *J* = 7.5 Hz, 1H, Ar-H), 3.92 (s, 2H, CH₂); ESI-MS *m/z* 330.1 [M + H]⁺.

2-(5-Bromo-1*H*-indol-3-yl)-*N*-(2-bromopyridin-3-yl)acetamide (2a)

Compound **2a** (79% yield) was prepared according to the procedure of **2b** from 2-(5-bromo-1H-indol-3-yl)acetic acid . ¹H NMR (500 MHz, DMSO-*d*₆) δ 11.20 (s, 1H, NH), 9.63 (s, 1H, NH), 8.18 (dd, *J* = 4.5, 1.6 Hz, 1H, Ar-H), 8.08 (dd, *J* = 8.0, 1.5 Hz, 1H, Ar-H), 7.88 (s, 1H, Ar-H), 7.44 (dt, *J* = 17.9, 9.0 Hz, 1H, Ar-H), 7.39 (s, 1H, Ar-H), 7.35 (d, *J* = 8.6 Hz, 1H, Ar-H), 7.20 (dd, *J* = 8.6, 1.8 Hz, 1H, Ar-H), 3.85 (s, 2H, CH₂); ESI-MS *m/z* 407.9 [M + H]⁺.

N-(2-bromopyridin-3-yl)-2-(5-methyl-1*H*-indol-3-yl)acetamide (2c)

Compound **2c** (81% yield) was prepared according to the procedure of **2b** from 2-(5-methyl-1H-indol-3-yl)acetic acid. ¹H NMR (500 MHz, CDCl₃) δ 8.71 (d, *J* = 8.1 Hz, 1H, Ar-H), 8.19 (s, 1H, Ar-H), 8.09 (s, 1H, Ar-H), 8.01 (d, *J* = 4.2 Hz, 1H, Ar-H), 7.39 (s, 1H, Ar-H), 7.33 (d, *J* = 8.6 Hz, 1H, Ar-H), 7.09 (d, *J* = 8.4 Hz, 1H, Ar-H), 3.93 (s, 2H, CH₂), 2.45 (s, 3H, CH₃); ESI-MS *m/z* 334.1 [M + H]⁺.

N-(2-bromopyridin-3-yl)-2-(5-methoxy-1*H*-indol-3-yl)acetamide (2d)

Compound **2d** (80% yield) was prepared according to the procedure of **2b** from 2-(5-methoxy-1H-indol-3-yl)acetic acid. ¹H NMR (500 MHz, CDCl₃) δ 8.71 (d, J = 8.1 Hz, 1H, Ar-H), 8.24 (s, 1H, Ar-H), 8.11 (s, 1H, Ar-H), 8.01 (d, J = 4.4 Hz, 1H, Ar-H), 7.33 (d, J = 8.9 Hz, 1H, Ar-H), 7.27 (d, J = 6.7 Hz, 1H, Ar-H), 7.23 (dd, J = 7.8, 4.7 Hz, 1H, Ar-H), 7.02 (s, 1H, Ar-H), 6.93 (d, J = 8.8 Hz, 1H, Ar-H), 3.92 (d, J = 7.0 Hz, 2H, CH₂), 3.84 (s, 3H, OCH₃); ESI-MS *m/z* 360.0 [M + H]⁺.

N-(2-bromopyridin-3-yl)-2-(5-cyano-1H-indol-3-yl)acetamide (2e)

Compound 2e (72% yield) was prepared according to the procedure of 2b from

2-(5-cyano-1H-indol-3-yl)acetic acid .¹H NMR (500 MHz, DMSO- d_6) δ 11.56 (s, 1H, NH), 9.71 (s, 1H, NH), 8.22 (s, 1H, Ar-H), 8.18 (d, J = 4.4 Hz, 1H, Ar-H), 8.06 (d, J = 8.0 Hz, 1H, Ar-H), 7.54 (d, J = 9.0 Hz, 2H, 2×Ar-H), 7.44 (d, J = 8.2 Hz, 2H, 2×Ar-H), 3.90 (s, 2H, CH₂); ESI-MS *m*/*z* 355.2 [M + H]⁺.

N-(2-bromopyridin-3-yl)-2-(6-methyl-1H-indol-3-yl)acetamide (2f)

Compound **2f** (83% yield) was prepared according to the procedure of **2b** from 2-(6-methyl-1H-indol-3-yl)acetic acid .¹H NMR (500 MHz, CDCl₃) δ 8.73 (d, *J* = 8.2 Hz, 1H, Ar-H), 8.22 (s, 1H, Ar-H), 8.13 (s, 1H, Ar-H), 8.04 (d, *J* = 4.4 Hz, 1H, Ar-H), 7.52 (d, *J* = 8.1 Hz, 1H, Ar-H), 7.29 (d, *J* = 8.5 Hz, 1H, Ar-H), 7.05 (d, *J* = 8.0 Hz, 1H, Ar-H), 3.97 (s, 2H, CH₂), 2.51 (s, 3H, CH₃); ESI-MS *m*/z 344.1 [M + H]⁺.

N-(2-bromopyridin-3-yl)-2-(5-chloro-1H-indol-3-yl)acetamide (2g)

Compound **2g** (81% yield) was prepared according to the procedure of **2b** from 2-(5-chloro-1H-indol-3-yl)acetic acid. ¹H NMR (500 MHz, DMSO- d_6) δ 11.17 (s, 1H, NH), 9.59 (s, 1H, NH), 8.17 (dd, J = 4.6, 1.8 Hz, 1H, Ar-H), 8.08 (dd, J = 7.9, 1.8 Hz, 1H, Ar-H), 7.71 (d, J = 2.1 Hz, 1H, Ar-H), 7.43 (dd, J = 8.0, 4.6 Hz, 1H, Ar-H), 7.40 (d, J = 2.4 Hz, 1H, Ar-H), 7.38 (d, J = 8.6 Hz, 1H, Ar-H), 7.08 (dd, J = 8.6, 2.1 Hz, 1H, Ar-H), 3.84 (s, 2H, CH₂); ESI-MS m/z 364.1 [M + H]⁺.

N-(2-bromopyridin-3-yl)-2-(6-chloro-1*H*-indol-3-yl)acetamide (2h)

Compound **2h** (78% yield) was prepared according to the procedure of **2b** from 2-(6-chloro-1H-indol-3-yl)acetic acid. ¹H NMR (500 MHz, DMSO- d_6) δ 11.11 (s, 1H, NH), 9.54 (s, 1H, NH), 8.16 (dd, J = 4.6, 1.8 Hz, 1H, Ar-H), 8.08 (dd, J = 8.1, 1.8 Hz, 1H, Ar-H), 7.63 (d, J = 8.4 Hz, 1H, Ar-H), 7.45 – 7.42 (m, 1H, Ar-H), 7.41 (d, J = 1.8 Hz, 1H, Ar-H), 7.38 (d, J = 2.3 Hz, 1H, Ar-H), 7.02 (dd, J = 8.5, 1.9 Hz, 1H, Ar-H), 3.85 (s, 2H, CH₂); ESI-MS m/z 364.1 [M + H]⁺.

N-(2-bromopyridin-3-yl)-2-(1-methyl-1H-indol-3-yl)acetamide (2i)

Compound **2i** (76% yield) was prepared according to the procedure of **2b** from 2-(1-methyl-1H-indol-3-yl)acetic acid .¹H NMR (500 MHz, CDCl₃) δ 8.74 (d, J = 8.1 Hz, 1H, Ar-H), 8.05 (s, 1H, Ar-H), 8.02 (d, J = 4.5 Hz, 1H, Ar-H), 7.61 (d, J = 7.9 Hz, 1H, Ar-H), 7.38 (d, J = 8.2 Hz, 1H, Ar-H), 7.30 (t, J = 7.6 Hz, 1H, Ar-H), 7.23–7.19 (m, 1H, Ar-H), 7.17 (d, J = 7.4 Hz, 1H, Ar-H), 7.13 (s, 1H, Ar-H), 3.94 (s, 2H, CH₂), 3.84 (s, 3H, CH₃); ESI-MS *m/z* 344.0 [M + H]⁺.

N-(2-bromo-5-methylpyridin-3-yl)-2-(1*H*-indol-3-yl)acetamide (2j)

Compound **2j** (75% yield) was prepared according to the procedure of **2b** from 2-bromo-5-methylpyridin-3-amine . ¹H NMR (500 MHz, DMSO-*d*₆) δ 10.98 (s, 1H, NH), 9.53 (s, 1H, NH), 8.06 (d, *J* = 15.2 Hz, 1H, Ar-H), 8.01 (s, 1H, Ar-H), 7.63 (d, *J* = 7.9 Hz, 1H, Ar-H), 7.37 (t, *J* = 10.1 Hz, 1H, Ar-H), 7.33 (s, 1H, Ar-H), 7.10 (t, *J* = 7.5 Hz, 1H, Ar-H), 7.01 (t, *J* = 7.4 Hz, 1H, Ar-H), 3.87 (s, 2H, CH₂), 2.29 (d, *J* = 14.6 Hz, 3H, CH₃); ESI-MS *m*/*z* 344.0 [M + H]⁺.

N-(2-bromo-5-(trifluoromethyl)pyridin-3-yl)-2-(1*H*-indol-3-yl)acetamide (2k)

Compound **2k** (73% yield) was prepared according to the procedure of **2b** from 2-bromo-5-(trifluoromethyl)pyridin-3-amine .¹H NMR (500 MHz, CDCl₃) δ 9.08 (s, 1H, NH), 8.34 (s, 1H, NH), 8.28 (s, 1H, Ar-H), 8.17 (s, 1H, Ar-H), 7.59 (t, *J* = 14.2 Hz, 1H, Ar-H), 7.46 (d, *J* = 8.2 Hz, 1H, Ar-H), 7.32–7.27 (m, 2H, 2×Ar-H), 7.23–7.14 (m, 1H, Ar-H), 4.00 (s, 2H, CH₂); ESI-MS *m*/*z* 398.2 [M + H]⁺.

General Procedure for the synthesis of 5a-5k:

9-Bromo-7,12-dihydropyrido[3',2':2,3]azepino[4,5-b]indol-6(5H)-one (5a, 1-Akp)

2a (205 mg, 0.501 mmol) and $InCl_3$ (111 mg, 0.501 mmol) were placed in the sealed tube and dissolved in dry toluene (10 ml). The reaction mixture was heated at 130 °C for 24 hours. After cooling to room temperature, the suspension was quenched with saturated NaHCO₃ aqueous solution and extracted with EA. The organic layer was collected and concentrated under vacuum. Purification by column chromatography on silica gel (eluting with DCM-MeOH, 100:1), afforded

the white solid product **5a(1-Akp)** (115 mg, 70% yield). The characterization data are consistent with the reported in literature¹. ¹H NMR (500 MHz, DMSO- d_6) δ 11.95 (s, 1H, NH), 10.30 (d, J = 26.6 Hz, 1H, NH), 8.56–8.41 (m, 1H, Ar-H), 7.98 (d, J = 1.5 Hz, 1H, Ar-H), 7.70–7.54 (m, 1H, Ar-H), 7.47–7.39 (m, 2H, Ar-H), 7.31 (dd, J = 8.6, 1.8 Hz, 1H, Ar-H), 3.68 (s, 2H, CH₂); ESI-MS *m/z* 328.1 [M + H]⁺; 96.5% purity.

7,12-Dihydropyrido[3',2':2,3]azepino[4,5-b]indol-6(5*H*)-one (5b)

Compound **5b** (65% yield) was prepared according to the procedure of **5a** from **2b**. The characterization data are consistent with the reported in literature¹. ¹H NMR (500 MHz, DMSO-*d*₆) δ 11.72 (s, 1H, NH), 10.24 (s, 1H, NH), 8.48 (d, *J* = 4.2 Hz, 1H, Ar-H), 7.70 (d, *J* = 7.9 Hz, 1H, Ar-H), 7.61 (d, *J* = 8.1 Hz, 1H, Ar-H), 7.47 (d, *J* = 8.2 Hz, 1H, Ar-H), 7.44–7.36 (m, 1H, Ar-H), 7.19 (t, *J* = 7.5 Hz, 1H, Ar-H), 3.66 (s, 2H, CH₂); ESI-MS *m/z* 250.1 [M + H]⁺; 95.7% purity.

9-Methyl-7,12-dihydropyrido[3',2':2,3]azepino[4,5-b]indol-6(5H)-one (5c)

Compound **5c** (67% yield) was prepared according to the procedure of **5a** from **2c**. The characterization data are consistent with the reported in literature¹. ¹H NMR (500 MHz, DMSO-*d*₆) δ 11.58 (s, 1H, NH), 10.21 (s, 1H, NH), 8.46 (s, 1H, Ar-H), 7.60 (d, *J* = 8.2 Hz, 1H, Ar-H), 7.47 (s, 1H, Ar-H), 7.39 (s, 1H, Ar-H), 7.35 (d, *J* = 8.8 Hz, 1H, Ar-H), 7.02 (d, *J* = 8.0 Hz, 1H, Ar-H), 3.61 (s, 2H, CH₂), 2.41 (s, 3H, CH₃); ESI-MS *m*/*z* 264.1 [M + H]⁺; 99.1% purity.

9-Methoxy-7,12-dihydropyrido[3',2':2,3]azepino[4,5-b]indol-6(5H)-one (5d)

Compound **5d** (66% yield) was prepared according to the procedure of **5a** from **2d**. The characterization data are consistent with the reported in literature¹. ¹H NMR (500 MHz, DMSO-*d*₆) δ 11.54 (s, 1H, NH), 10.20 (s, 1H, NH), 8.46 (d, *J* = 4.3 Hz, 1H, Ar-H), 7.60 (d, *J* = 8.1 Hz, 1H, Ar-H), 7.42–7.37 (m, 1H, Ar-H), 7.35 (d, *J* = 9.1 Hz, 1H, Ar-H), 7.21 (s, 1H, Ar-H), 6.83 (d, *J* = 8.6 Hz, 1H, Ar-H), 3.80 (s, 3H, OCH₃), 3.64 (s, 2H, CH₂); ESI-MS *m/z* 279.2 [M + H]⁺; 99.8% purity.

6-Oxo-5,6,7,12-tetrahydropyrido[3',2':2,3]azepino[4,5-b]indole-9-carbonitrile (5e)

Compound **5e** (53% yield) was prepared according to the procedure of **5a** from **2e**. The characterization data are consistent with the reported in literature¹. ¹H NMR (500 MHz, DMSO- d_6) δ 12.33 (s, 1H, NH), 10.33 (s, 1H, NH), 8.51 (s, 1H, Ar-H), 8.39 (s, 1H, Ar-H), 7.65 (d, J = 8.3 Hz, 1H, Ar-H), 7.60 (d, J = 8.6 Hz, 1H, Ar-H), 7.53 (d, J = 8.5 Hz, 1H, Ar-H), 7.46 (d, J = 4.6 Hz, 1H, Ar-H), 3.76 (s, 2H, CH₂); ESI-MS *m/z* 274.8 [M + H]⁺; 97.4% purity.

10-Methyl-7,12-dihydropyrido[3',2':2,3]azepino[4,5-b]indol-6(5H)-one (5f)

Compound **5f** (64% yield) was prepared according to the procedure of **5a** from **2f**.¹H NMR (500 MHz, DMSO- d_6) δ 11.55 (s, 1H, NH), 10.20 (s, 1H, NH), 8.46 (s, 1H, Ar-H), 7.67–7.50 (m, 2H, 2×Ar-H), 7.38 (s, 1H, Ar-H), 7.26 (s, 1H, Ar-H), 6.91 (d, J = 8.1 Hz, 1H, Ar-H), 3.62 (s, 2H, CH₂), 2.42 (s, 3H, CH₃); ¹³C NMR (126 MHz, DMSO- d_6) δ 171.53, 144.72, 141.14, 138.47, 132.68, 132.39, 132.29, 129.74, 124.88, 122.70, 121.48, 118.61, 112.13, 109.40, 32.46, 22.04; HRMS calcd for C₁₆H₁₃N₃O⁺ [M + H]⁺ 264.1131, found 264.1130; 99.8% purity.

9-Chloro-7,12-dihydropyrido[3',2':2,3]azepino[4,5-b]indol-6(5H)-one (5g)

Compound **5g** (62% yield) was prepared according to the procedure of **5a** from **2g**. The characterization data are consistent with the reported in literature¹. ¹H NMR (500 MHz, DMSO- d_6) δ 11.91 (s, 1H, NH), 10.25 (s, 1H, NH), 8.49 (d, J = 4.1 Hz, 1H, Ar-H), 7.81 (d, J = 12.5 Hz, 1H, Ar-H), 7.61 (t, J = 10.0 Hz, 1H, Ar-H), 7.49–7.39 (m, 2H, 2×Ar-H), 7.18 (t, J = 9.9 Hz, 1H, Ar-H), 3.65 (d, J = 18.4 Hz, 2H, CH₂); ESI-MS *m*/*z* 284.1 [M + H]⁺; 99.7% purity.

10-Chloro-7,12-dihydropyrido[3',2':2,3]azepino[4,5-b]indol-6(5H)-one (5h)

Compound **5h** (64% yield) was prepared according to the procedure of **5a** from **2h**.¹H NMR (500 MHz, DMSO-*d*₆) δ 11.86 (s, 1H, NH), 10.27 (s, 1H, NH), 8.48 (d, *J* = 4.4 Hz, 1H, Ar-H), 7.75 (d, *J* = 8.7 Hz, 1H, Ar-H), 7.62 (d, *J* = 8.2 Hz, 1H, Ar-H), 7.47 (s, 1H, Ar-H), 7.42 (dd, *J* = 7.8, 4.6 Hz, 1H, Ar-H), 7.09 (d, *J* = 8.5 Hz, 1H, Ar-H), 3.67 (s, 2H, CH₂); ¹³C NMR (126 MHz, DMSO-*d*₆) δ 171.37, 144.85, 140.45, 138.25, 134.01, 132.72, 129.89, 127.92, 125.67, 123.31, 120.51, 120.03, 111.87, 109.44, 32.28; HRMS calcd for C₁₅H₁₀ClN₃O⁺ [M + H]⁺ 283.0585, found 283.0584; 95.9% purity.

Compound **5i** (60% yield) was prepared according to the procedure of **5a** from **2i**. The characterization data are consistent with the reported in literature¹. ¹H NMR (500 MHz, CDCl₃) δ 8.60 (d, *J* = 4.5 Hz, 1H, Ar-H), 8.09 (s, 1H, NH), 7.73 (d, *J* = 7.9 Hz, 1H, Ar-H), 7.50 (d, *J* = 8.2 Hz, 1H, Ar-H), 7.44 (d, *J* = 8.3 Hz, 1H, Ar-H), 7.35 (t, *J* = 7.6 Hz, 1H, Ar-H), 7.31 (dd, *J* = 8.1, 4.6 Hz, 1H, Ar-H), 7.20 (t, *J* = 7.4 Hz, 1H, Ar-H), 4.08 (s, 3H, CH₃), 3.64 (s, 2H, CH₂); ESI-MS *m/z* 264.0 [M + H]⁺; 99.8% purity.

3-Methyl-7,12-dihydropyrido[3',2':2,3]azepino[4,5-b]indol-6(5H)-one (5j)

Compound **5j** (57% yield) was prepared according to the procedure of **5a** from **2j**.¹H NMR (500 MHz, DMSO-*d*₆) δ 11.67 (s, 1H, NH), 10.18 (s, 1H, NH), 8.35 (s, 1H, Ar-H), 7.69 (d, *J* = 7.9 Hz, 1H, Ar-H), 7.47 (d, *J* = 8.1 Hz, 1H, Ar-H), 7.43 (s, 1H, Ar-H), 7.19 (t, *J* = 7.5 Hz, 1H, Ar-H), 7.08 (t, *J* = 7.4 Hz, 1H, Ar-H), 3.64 (s, 2H, CH₂), 2.38 (s, 3H, CH₃); ¹³C NMR (126 MHz, DMSO-*d*₆) δ 171.47, 145.38, 138.57, 137.86, 133.15, 132.56, 132.19, 129.80, 126.84, 123.12, 119.53, 118.71, 112.35, 108.61, 32.35, 18.04; HRMS calcd for C₁₆H₁₃N₃O⁺ [M + H]⁺ 264.1131, found 264.1129; 95.7% purity.

3-(Trifluoromethyl)-7,12-dihydropyrido[3',2':2,3]azepino[4,5-b]indol-6(5*H*)-one (5k)

Compound **5k** (54% yield) was prepared according to the procedure of **5a** from **2k**.¹H NMR (500 MHz, DMSO-*d*₆) δ 11.91 (s, 1H, NH), 10.47 (s, 1H, NH), 8.83 (s, 1H, Ar-H), 7.95 (s, 1H, Ar-H), 7.77 (d, *J* = 8.0 Hz, 1H, Ar-H), 7.51 (d, *J* = 8.2 Hz, 1H, Ar-H), 7.26 (t, *J* = 7.5 Hz, 1H, Ar-H), 7.12 (t, *J* = 7.5 Hz, 1H, Ar-H), 3.78 (s, 2H, CH₂); ¹³C NMR (126 MHz, DMSO-*d*₆) δ 171.61, 144.25, 140.66, 140.63, 138.49, 132.13, 131.74, 127.32, 126.72, 126.50, 125.15, 124.33, 123.68, 123.43, 122.99, 119.95, 119.36, 112.67, 111.70, 32.47; HRMS calcd for C₁₆H₁₀F₃N₃O⁺ [M + H]⁺ 318.0848, found 318.0851; 97.4% purity.

General Procedure for the synthesis of 6-8:

9-Bromo-5,6,7,12-tetrahydropyrido[3',2':2,3]azepino[4,5-b]indole (6)

1-Akp (30 mg, 0.091 mmol) was dissolved in THF (dry, 1 ml), and borane dimethyl sulfide (21 mg, 0.274 mmol) was added slowly onto the mixture at 0 °C. The reaction mixture was stirred at room temperature overnight. The reaction mixture was quenched with methanol and added 0.5 ml of 6N HCl solution, then stirred at room temperature for 3 hours. Adjusted the pH of the reaction mixture to alkaline with the saturated NaHCO₃ solution and extracted with EA. The organic layer was collected and concentrated under vacuum. Purification by column chromatography on silica gel (eluting with PE/EA = 3/1), afforded the white solid product **6** (17.9 mg, 64% yield).¹H NMR (500 MHz, DMSO-*d*₆) δ 11.31 (s, 1H, NH), 8.04 (d, *J* = 4.0 Hz, 1H, NH), 7.62 (s, 1H, Ar-H), 7.39 (d, *J* = 8.5 Hz, 1H, Ar-H), 7.19 (t, *J* = 9.0 Hz, 2H, 2×Ar-H), 7.07 (dd, *J* = 7.8, 4.4 Hz, 1H, Ar-H), 6.48 (s, 1H, Ar-H), 3.35 (s, 2H, CH₂), 3.05 (s, 2H, CH₂); ¹³C NMR (126 MHz, DMSO-*d*₆) δ 145.08, 138.95, 135.63, 135.34, 134.82, 130.97, 125.04, 124.81, 122.69, 121.14, 113.96, 113.61, 111.36, 43.46, 28.71; HRMS calcd for C₁₅H₁₂BrN₃⁺ [M + H]⁺ 314.0287, found 314.0284.

Dimethyl

2,2'-(9-bromo-6-oxo-6,7-dihydropyrido[3',2':2,3]azepino[4,5-b]indole-5,12-diyl)diacetate (7)

1-Akp (60 mg, 0.183 mmol), methyl 2-bromoacetate (84 mg, 0.549 mmol), K₃PO₄ (117 mg, 0.549 mmol), KI (91 mg, 0.549 mmol) were dissolved in DMF (1 ml). The reaction mixture was heated at 50 °C overnight. After cooling to room temperature, extracted with EA and washed by water. The organic layer was collected and concentrated under vacuum. Purification by column chromatography on silica gel (eluting with DCM/MeOH = 100/1), afforded the product 7 (67.4 mg, 78% yield).¹H NMR (500 MHz, CDCl₃) δ 8.53 (d, *J* = 3.5 Hz, 1H, Ar-H), 7.88 (s, 1H, Ar-H), 7.79 (d, *J* = 8.4 Hz, 1H, Ar-H), 7.42 (d, *J* = 8.5 Hz, 1H, Ar-H), 7.34–7.30 (m, 1H, Ar-H), 7.20 (d, *J* = 8.7 Hz, 1H, Ar-H), 5.45 (s, 1H, CH₂-1), 5.23 (d, *J* = 14.1 Hz, 1H, CH₂-1), 4.61 (s, 1H, CH₂-1), 4.03 (s, 2H,CH₂), 3.79 (s, 3H, OCH₃), 3.73 (s, 3H, OCH₃), 3.68 (d, *J* = 9.2 Hz, 1H, CH₂-1); HRMS calcd for C₂₁H₁₈BrN₃O₅⁺ [M + H]⁺ 472.0502, found 472.0498.

9-Bromo-5,12-bis(2-hydroxyethyl)-7,12-dihydropyrido[3',2':2,3]azepino[4,5-b]indol-6(5H)-one (8)

7 (63.7 mg, 0.135 mmol) was dissolved in THF (1 ml), and LiBH₄ (9 mg, 0.405 mmol) was added slowly onto the mixture at 0 °C. The reaction mixture was stirred at room temperature for 3 hours. The reaction mixture was quenched by water and extracted by EA. The organic layer was collected and concentrated under vacuum. Purification by column chromatography on silica gel (eluting with DCM/MeOH = 100/1 to 80/1), afforded the white solid product **8** (25.7 mg, 46%)

yield).¹H NMR (500 MHz, CDCl₃) δ 8.56 (d, J = 4.4 Hz, 1H, Ar-H), 8.09 (d, J = 8.3 Hz, 1H, Ar-H), 7.89 (s, 1H, Ar-H), 7.41 (d, J = 2.5 Hz, 1H, Ar-H), 7.35 (s, 1H, Ar-H), 7.29 (d, J = 9.2 Hz, 1H, Ar-H), 4.96 (dd, J = 32.1, 13.6 Hz, 1H, CH₂-1), 4.76–4.67 (m, 1H, CH₂-1), 4.63 (d, J = 15.5 Hz, 1H, CH₂-1), 4.13 (t, J = 10.4 Hz, 1H, CH₂-1), 4.06 (dd, J = 12.6, 8.4 Hz, 2H, CH₂), 3.97 (d, J = 14.0 Hz, 1H, CH₂-1), 3.86–3.79 (m, 1H, CH₂-1), 3.75 (d, J = 3.4 Hz, 2H, CH₂); ¹³C NMR (126 MHz, CDCl₃) δ 171.45, 145.31, 143.62, 138.10, 137.28, 133.99, 133.05, 127.02, 126.92, 122.56, 121.93, 114.18, 113.60, 111.68, 61.66, 60.91, 53.26, 46.84, 29.70; HRMS calcd for C₁₉H₁₈BrN₃O₃⁺ [M + H]⁺ 416.0604, found 416.0600.

Chemically Induced Totipotent Stem Cells (ciTotiSCs) Induced From Mouse Embryonic Stem Cells (mESCs)²

ciTotiSCs were induced from mESCs on inactivated MEF feeder layers using KSR basal medium composed of KnockOut DMEM, 5% KSR, CDL (CD lipid concentrate, 500×), 1% N2, 1× l-glutaMAX, 1× penicillin-streptomycin, 1× non-essential amino acids, 1× sodium pyruvate, 55 μ M 2-mercaptoethanol and 1,000 U ml–1 mLIF, 50 ng ml–1 sodium l-ascorbyl-2-phosphate, 2.5 μ M 1-azakenpaullone, 0.5 μ M WS6 and 0.2 μ M TTNPB. The medium was changed every day until day 2. All cells were cultured at 37°C, 5% CO₂ and 21% O₂.

mESCs were maintained on inactivated MEF feeder layers using Serum/LIF/2i medium composed of KnockOut DMEM supplemented with 15% FBS, 1×1 -glutaMAX, $1 \times$ penicillin-streptomycin, $1 \times$ non-essential amino acids (NEAA), $1 \times$ sodium pyruvate, 55 μ M 2-mercaptoethanol, 1,000 U ml–1 mouse leukaemia inhibitory factor (mLIF), 3 μ M CHIR-99021 and 1 μ M PD0325901.

Biological activity of 1-Akp and analogues in inducing ciTotiSCs from mESCs

For evaluating the biological activity of 1-Akp and analogues in inducing ciTotiSCs from mESCs, the ciTotiSCs induction procedure using either 1-Akp or equivalent analogue was conducted. The resultant ciTotiSCs were collected and resuspended in 1× DPBS, of which the MERVL-Tdtomato signal were analyzed using FACSAria-II flow cytometer (BD Biosciences). 30,000 cells were analyzed per sample. Three replicate experiments were performed for each compound. Data analysis was performed using FlowJo vX.0.7 and GraphPad Prism 9. The data are shown below.

Figure caption: The activation efficiency of totipotency-marked MERVL-Tdtomato by 1-AKP and its analogs. (a) FACS-derived histograms and (b) MERVL activation efficiencies for mESCs after 2-day induction by 1-AKP and its analogs. Error bars indicate the SD of three replicating measurements.

References

- H. Stukenbrock, R. Mussmann, M. Geese, Y. Ferandin, O. Lozach, T. Lemcke, S. Kegel, A. Lomow, U. Burk, C. Dohrmann, L. Meijer, M. Austen and C. Kunick, *Journal of Medicinal Chemistry*, 2008, **51**, 2196-2207.
- Y. Hu, Y. Yang, P. Tan, Y. Zhang, M. Han, J. Yu, X. Zhang, Z. Jia, D. Wang, K. Yao, H. Pang, Z. Hu, Y. Li, T. Ma, K. Liu and S. Ding, *Nature*, 2023, 617, 792-797.

¹H NMR, ¹³C NMR, MS and HRMS Spectra

¹H-NMR spectrum of compound 2a

MS spectrum of compound 2a

Part 15 Par

-3.968

¹H-NMR spectrum of compound 2b

MS spectrum of compound 2b

¹H-NMR spectrum of compound 2c

MS spectrum of compound 2c

8.715 8.609 8.609 8.609 8.6018 8.6018 8.6018 8.6018 7.7.329 7.7.329 7.7.329 7.7.329 7.7.329 7.7.329 7.7.329 7.7.220 7.7.200 7.

¹H-NMR spectrum of compound 2d

MS spectrum of compound 2d

¹H-NMR spectrum of compound 2e

MS spectrum of compound 2e

¹H-NMR spectrum of compound 2f

MS spectrum of compound 2f

¹H-NMR spectrum of compound 2g

MS spectrum of compound 2g

¹H-NMR spectrum of compound 2h

MS spectrum of compound 2h

*8.737 *8.727 *8.727 *8.053 *8.019 *7.616 *7.616 *7.516 *7.516 *7.516 *7.516 *7.517 *7.516 *7.7301

¹H-NMR spectrum of compound 2i

MS spectrum of compound 2i

MS spectrum of compound 2j

-9,084 8,287 8,287 8,287 8,287 8,167 1,617 1,617 1,617 1,617 1,617 1,617 1,617 1,617 1,71811 1,7181 1,7181 1,7181 1,71811

¹H-NMR spectrum of compound 5a(1-Azakenpaullone)

MS spectrum of compound 5a(1-Azakenpaullone)

¹H-NMR spectrum of compound 5b

MS spectrum of compound 5b

¹H-NMR spectrum of compound 5c

MS spectrum of compound 5c

¹H-NMR spectrum of compound 5d

MS spectrum of compound 5d

¹H-NMR spectrum of compound 5e

MS spectrum of compound 5e

¹³C-NMR spectrum of compound 5f

¹H-NMR spectrum of compound 5g

MS spectrum of compound 5g

¹³C-NMR spectrum of compound 5h

¹H-NMR spectrum of compound 5i

MS spectrum of compound 5i

¹H-NMR spectrum of compound 5j

¹³C-NMR spectrum of compound 5j

¹³C-NMR spectrum of compound 5k

¹³C-NMR spectrum of compound 6

HRMS spectrum of compound 6

⁶ 8.29 ⁸ 8.20 ⁸ 8.20 ¹⁷⁷⁷¹ ⁷⁷⁷¹ ⁷⁷⁷¹ ⁷⁷⁷¹ ⁷⁷⁷¹ ⁷⁷¹¹ ⁷⁷¹ ⁷⁷¹¹ ⁷⁷¹¹

¹H-NMR spectrum of compound 7

HRMS spectrum of compound 7

¹³C-NMR spectrum of compound 8

566	5																			
0.5 1.0	15 20	25 30	3.5	4.0	4.5	5.0	5.6	6.0 Time, min	6.5	7.0	78		0	8.5	9.0	95 1	10.0	10.5	11.0	11.5
9.000ø																				
terView				a ?					New Se	ession						Y				
C Number T Wiff file Name Sample of Name positive		111	Name	Formula	Isotope	Mass (Da)	Adduc Int	Extraction Mass (Da)	Width (Da)	(width	Expected BT (min)	RT Width	Fragment Mare (Ta)	Found At Mage (Da)	Error (ppm)	Isotope Ratio	Found At RT (mm)	RT Deta	RT %	Intensity
L results 0706 Sumple 1		415	053152754 C19	9H189H303	0	415.05315	+11	416.05043	0.02	48.07	0	2	Males (Da)	415.06004	-0.9	3.9	1.16	1.16	0	8789783
0706 Sample 2	•	0000						S												
e result equal or better 🗸 🗸 🗸 🔹																				
result equal or better $\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{$		~									_									
result equal or better VVVV *	Control Non	ié.		*						Rows 1	_							Proce	84	Cancel
trenuits equal or better VVVV・ 2766(Sample 1) き - % 近点 本 = - (キ: キ) パ)	Control Non	e ge		•						Rows 1	_							Proce	88.	Cancel
e result: equal or better イイイイ 0706(Gample 1) 0 ~ % 近点 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	Control Non 2. 10 4. 0 10	ec gel n 1.213 to 1.223 min		•						Rows 1	_							Proce	88-	Cancel
n resulta equal or better ノノノ 、 0706(Sample 1) ロー 35 <u>72</u> <u>A</u> ・ +, -, -, -, -, -, -, -, -, -, -, -, -, -,	Control Non	е фі n 1.213 in 1.223 тіп		۲						Rows 1	_	àre neco						Proce	86.	Cancel
a result could or better イイイイ 0706(Sample 1) キー % 万 瓜 瓜 モートキーキーキー 201000 H	Control Non 2011 11 12 12 12 12 TOF MS (180 - 1500) from 15.0000	е ф0 1213 ю 1223 жіл		۷						Rows 1	_	à18.0583						Proce	84	Cancel
a result aquil ar better ダイダイ、 * 07065Sample 1) キー 5 之 ム の - キッ ペ ペ 01000 H will (sample 1) -101445 2 01000 H	・ Control Nor だ」自己の日本 - 107 HS(100 - 1500) from 子(10,0000	е gfi 1.213 in 1.223 тип		•						Rows 1	_	à18.0583						Proce	54	Canorl
8 result equil or better ダイダイ * 07665ample 1) - ~ 5 25 4 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	Correst Non 2 10 - 1500 feer 1 10.5550	іс фі п 1.213 іс 1.223 жіл		•						Rows 1	_	À18.0583						Proce	94	Canorl
a snull equil or better ダイダイ、 (7766Sample 1) (* - 5、22 ム、 ・ キュ キャパ (550000 H) (* 1996 - 1997 - 1	Correct Non 20 10 40 100 100 - 101 HS(100-1500) Here 110,0000	ić gđi n 1.213 let 1.223 min		•						Rows 1	_	à18.0583						Proce	95 -	Cincel
e estut equil or better v v v v 0766(Sample 1) 0 ~ % 22 • (+ -, -, -, -, -, -, -, -, -, -, -, -, -,	Contros Non 2 6 4 9 1 1 1 - 107 H5(100-1500) from 1410,0000	e gði 1 210 is 1 223 min		۷						Rows 1	_	418.0583			_			Proce	56.	Cancel
er traub egad or ketter √ √ √ √ ↓ 07065 sample 1) 0 + 5 × 52 ± 4. • - (+, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1	く Centrol Non た 音 全 二 二 二 - 107 HS(100-1500) fee - 105 HS(100-1500) fee	டை தமி 1 213 ko 1 223 min		۷						Rows 1	_	418.0583						Proce	56	Cancel
Internauto equal or better ♥ ♥ ♥ ♥ ♥ ♥ 070665ample 1) 2 = 5 = 52 (24. m = 1 + m, -m, -m) 184000 H 6 6 6 6 6 6 6 6 6 6 6 7 8 7 8 8 8 8 8 8 8 8 8 8 8 8 8	Control Nort 20 IN Control Nort 20 IN KS(100-1500) Iwa 21 Control Nort	е g ft n 1.213 је 1.223 жил		•	417 652					Rows 1	_	418.0583						Proct	76)	Cancel

HRMS spectrum of compound 8