Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Supporting Information

Figure S1. ¹H NMR spectrum of ligand HL¹ (600 MHz, deuterium oxide -20% HCl).

Figure S2. ¹H NMR spectrum of ligand HL² (600 MHz, deuterium oxide-20% HCl).

Figure S3 The EPR spectrum of complexes 1 and 2 at room temperature.

Figure S4. The measured and simulated XRD by Mercury for complexes 1 and 2.

Figure S5. The relative activity between 2 and 1 for the PNPA catalytic hydrolysis.

Figure S6. ESI⁺-MS spectra for complex 1 in H_2O medium.

Figure S7. ESI^+ -MS spectra for 2 in H₂O medium.

Figure S8. pH-Dependent hydrolysis of PNPA promoted by **1** in micellar solutions of 16-6-16 (A), LSS (B), and $C_{22/8}$ (C).

Figure S9. UV–Vis spectra for the hydrolysis of PNPA or PNPP (inset) by 1.

Selected bond length (Å) of 1					
$Cu(1)-Cu(1^1)$		3.0217(13)			
Cu(1)-O(3)		1.942(4)			
Cu(1)-O(3)		1.964(4)			
Cu(1)-N(2)		1.993(5)			
Cu(1)-N(1)		1.976(5)			
Cu(1)-O(1)		2.183(4)			
$O(3)$ - $Cu(1^1)$		1.942(4)			
	Selected bond le	ength (Å) of 2			
Cu(1)-O(1)	1.895(4)	Cu(4)-N(10)	1.995(5)		
Cu(1)-O(2)	1.967(4)	Cu(5)-O(22)	1.889(6)		
Cu(1)-N(1)	2.007(5)	Cu(5)-O(23)	1.960(5)		
Cu(1)-N(12)	1.978(5)	Cu(5)-N(21)	1.961(6)		
Cu(2)-O(4)	1.906(5)	Cu(5)-N(22)	1.997(6)		
Cu(2)-O(5)	1.976(4)	Cu(6)-O(13)	1.906(5)		
Cu(2)-O(26)	2.383(8)	Cu(6)-O(14)	1.955(5)		
Cu(2)-N(3)	1.963(5)	Cu(6)-N(13)	1.985(6)		
Cu(2)-N(4)	1.994(5)	Cu(6)-N(24)	1.949(6)		
Cu(3)-O(7)	1.902(4)	Cu(7)-O(16)	1.913(5)		
Cu(3)-O(8)	1.961(4)	Cu(7)-O(17)	1.913(5)		
Cu(3)-N(6)	1.963(5)	Cu(7)-N(15)	1.964(6)		
Cu(3)-N(7)	1.997(4)	Cu(7)-N(16)	1.988(5)		
Cu(4)-O(10)	1.904(5)	Cu(8)-O(19)	1.891(5)		
Cu(4)-O(11)	1.974(4)	Cu(8)-O(20)	1.952(5)		
Cu(4)-O(25)	2.414(9)	Cu(8)-N(18)	1.958(5)		
Cu(4)-N(9)	1.957(5)	Cu(8)-N(19)	1.992(5)		

Table S1. Selected bond length (\AA) of 1 and 2

	Selected bo	ond angle (°) of 1	
$O(3^1)$ -Cu(1)-Cu(1 ¹)	39.59(10)	$O(3^1)-Cu(1)-O(1)$	98.88(18)
$O(3)-Cu(1)-Cu(1^1)$	39.07(10)	$N(2)-Cu(1)-Cu(1^{1})$	122.21(14)
$O(3^1)-Cu(1)-O(3)$	77.93(16)	N(2)-Cu(1)-O(1)	94.34(17)
O(3)-Cu(1)-N(2)	136.8(2)	$N(1)-Cu(1)-Cu(1^{1})$	131.45(13)
$O(3^1)-Cu(1)-N(2)$	102.1(2)	N(1)-Cu(1)-N(2)	91.0(2)
O(3)-Cu(1)-N(1)	92.38(16)	N(1)-Cu(1)-O(1)	80.14(19)
$O(3^{1})-Cu(1)-N(1)$	166.9(2)	$O(1)-Cu(1)-Cu(1^{-1})$	125.40(11)
O(3)-Cu(1)-O(1)	128.7(2)		
	Selected bo	ond angle (°) of 2	
O(1)-Cu(1)-O(2)	173.0(3)	N(9)-Cu(4)-O(11)	91.3(2)
O(1)-Cu(1)-N(1)	94.05(18)	N(9)-Cu(4)-O(25)	97.0(3)
O(1)-Cu(1)-N(12)	90.05(18)	N(9)-Cu(4)-N(10)	171.9(2)
O(2)-Cu(1)-N(1)	84.02(17)	N(10)-Cu(4)-O(25)	89.1(3)
O(2)-Cu(1)-N(1)	91.96(18)	O(22)-Cu(5)-O(23)	172.2(4)
N(12)-Cu(1)-N(1)	175.87(19)	O(22)-Cu(5)-N(21)	89.7(2)
O(4)-Cu(2)-O(5)	173.4(2)	O(22)-Cu(5)-N(22)	94.1(2)
O(4)-Cu(2)-O(26)	97.6(3)	O(23)-Cu(5)-N(21)	92.2(2)
O(4)-Cu(2)-N(3)	90.6(2)	O(23)-Cu(5)-N(22)	83.5(2)
O(4)-Cu(2)-N(4)	94.7(2)	N(21)-Cu(5)-N(22)	174.7(2)
O(5)-Cu(2)-O(26)	88.4(3)	O(13)-Cu(6)-O(14)	166.3(4)
O(5)-Cu(2)-N(4)	82.46(18)	O(13)-Cu(6)-N(13)	94.2(2)
N(3)-Cu(2)-O(5)	91.5(2)	O(13)-Cu(6)-N(24)	90.6(2)
N(3)-Cu(2)-O(26)	97.7(3)	O(14)-Cu(6)-N(13)	83.4(2)
N(3)-Cu(2)-N(4)	171.0(2)	N(24)-Cu(6)-O(14)	94.1(2)
N(4)-Cu(2)-O(26)	88.9(3)	N(24)-Cu(6)-N(13)	169.3(3)
O(7)-Cu(3)-O(8)	178.38(19)	O(16)-Cu(7)-O(17)	173.1(3)
O(7)-Cu(3)-N(6)	89.72(18)	O(16)-Cu(7)-N(15)	90.7(2)
O(7)-Cu(3)-N(7)	94.71(17)	O(16)-Cu(7)-N(16)	94.1(2)
O(8)-Cu(3)-N(6)	91.61(18)	O(17)-Cu(7)-N(16)	83.0(2)
O(8)-Cu(3)-N(7)	83.94(17)	N(15)-Cu(7)-O(17)	91.7(2)
N(6)-Cu(3)-N(7)	175.50(19)	N(15)-Cu(7)-N(16)	173.4(2)
O(10)-Cu(4)-O(11)	173.8(2)	O(19)-Cu(8)-O(20)	169.0(3)
O(10)-Cu(4)-O(25)	97.8(3)	O(19)-Cu(8)-N(18)	89.7(2)
O(10)-Cu(4)-N(9)	90.6(2)	O(19)-Cu(8)-N(19)	94.63(19)
O(10)-Cu(4)-N(10)	93.9(2)	O(20)-Cu(8)-N(18)	92.30(19)
O(11)-Cu(4)-O(25)	87.8(3)	O(20)-Cu(8)-N(19)	83.86(19)
O(11)-Cu(4)-N(10)	83.45(19)	N(18)-Cu(8)-N(19)	175.0(2)

Table S2. Selected bond angle (°) of 1 and 2

Catalyst	Calculated Addison Tau factors (τ) and geometry					
		Cu(1)	Cu(2)			
1	τ	τ geometrical shape		geometrical shape		
	0.86	distorted trigonal bipyramid	0.71	distorted trigonal bipyramid		
		Cu(1)	Cu(2)			
	τ	geometrical shape	τ	geometrical shape		
	0.08	0.08 square pyramid		distorted square pyramid		
		Cu(3)	Cu(4)			
2	τ	geometrical shape	τ	geometrical shape		
	0.04	0.04 square pyramid		distorted square pyramid		
2		Cu(5)		Cu(6)		
	τ	geometrical shape	τ	geometrical shape		
	0.09	0.09 distorted square pyramid		distorted square pyramid		
		Cu(7)	Cu(8)			
	τ	geometrical shape	τ	geometrical shape		
	0.10	distorted square pyramid	0.11	distorted square pyramid		

Table S3. Calculated Addison Tau factors (τ) and geometry for central copper(II) ions of 1 and 2

		10 ³ [S](mol/L)					
Complex	pН	0.200	0.267	0.333	0.400	0.467	
				$10^3 k_{\rm ob}({\rm s}^{-1})$			
	7.00	5.57	6.09	7.70	8.63	9.08	
	7.30	5.87	7.82	8.72	9.83	11.2	
1	7.60	6.57	8.32	9.35	11.3	12.2	
I	7.90	7.81	10.3	11.8	13.7	14.7	
	8.20	8.87	12.4	14.3	16.7	18.7	
	8.50	11.7	15.1	20.0	21.9	27.4	
2	7.00	13.2	16.2	17.6	19.3	20.9	
	7.30	14.4	17.0	20.1	19.6	23.3	
	7.60	13.7	17.7	18.9	21.5	23.9	
	7.90	14.2	17.5	20.7	23.2	26.2	
	8.20	15.5	20.5	23.2	27.8	29.1	
	8.50	19.9	24.6	28.0	32.7	35.4	

 Table S4. Pseudo first-order rate constants of PNPP hydrolysis catalyzed by 1 or 2 in buffered aqueous solution

Conditions: 25 °C, I= 0.1 M KCl, [complex]= 1.0×10^{-5} mol/L.

			$10^3 k_{\rm ob}({\rm s}^{-1})$			
Micelle	pН	[S] 0.200 mM	0.267	0.333	0.400	0.267
16-6-16	7.00	0.258	0.290	0.351	0.360	0.420
	7.30	0.222	0.278	0.350	0.430	0.474
	7.60	0.347	0.427	0.537	0.604	0.692
	7.90	0.646	0.896	1.03	1.18	1.37
	8.20	1.05	1.36	1.70	2.01	2.19
	8.50	2.28	3.19	3.44	4.14	4.55
C _{22/8}	7.00	0.129	0.172	0.178	0.190	0.199
	7.30	0.188	0.229	0.252	0.326	0.338
	7.60	0.266	0.315	0.459	0.490	0.578
	7.90	0.557	0.600	0.791	0.831	0.984
	8.20	0.975	1.29	1.50	1.82	2.19
	8.50	1.19	1.64	2.07	2.30	2.83
LSS	7.00	0.0856	0.0972	0.115	0.141	0.155
	7.30	0.0902	0.166	0.201	0.214	0.275
	7.60	0.216	0.306	0.346	0.400	0.475
	7.90	0.466	0.544	0.650	0.789	0.889
	8.20	0.707	0.873	1.06	1.23	1.51
	8.50	1.18	1.47	1.93	2.10	2.35

Table S5. Apparent first-order rate constants of PNPA mediated by 2 in various micelles

Conditions: 25 °C, I= 0.1 M KCl, [2]= 1.0×10^{-5} mol/L, [16–6-16]= 1.0×10^{-4} mol/L, [C_{22/8}]=

 1.0×10^{-4} mol/L, [LSS]= 5.0×10^{-3} mol/L.

$10^3 k_{\rm ob}({\rm s}^{-1})$							
Micelle	pН	[S] 0.200 mM	0.267	0.333	0.400	0.267	
16-6-16	7.00	0.222	0.276	0.281	0.319	0.432	
	7.30	0.275	0.309	0.341	0.353	0.410	
	7.60	0.278	0.374	0.481	0.578	0.630	
	7.90	0.656	0.762	0.880	1.03	1.22	
	8.20	0.949	1.172	1.50	1.63	1.98	
	8.50	1.95	2.46	2.92	3.33	3.79	
C _{22/8}	7.00	0.127	0.131	0.167	0.188	0.243	
	7.30	0.179	0.216	0.243	0.274	0.313	
	7.60	0.288	0.383	0.431	0.509	0.604	
	7.90	0.529	0.597	0.715	0.850	0.938	
	8.20	1.04	1.23	1.62	1.86	2.11	
	8.50	1.34	1.86	2.06	2.52	2.75	
LSS	7.00	0.078	0.105	0.120	0.126	0.148	
	7.30	0.116	0.151	0.181	0.221	0.272	
	7.60	0.234	0.302	0.334	0.397	0.511	
	7.90	0.399	0.525	0.626	0.727	0.821	
	8.20	0.784	0.929	1.09	1.39	1.50	
	8.50	1.33	1.67	1.95	2.21	2.51	

Table S6. Apparent first-order rate constants of PNPA mediated by 1 in various micelles

Conditions: 25 °C, I= 0.1 M KCl, [1]= 1.0×10^{-5} mol/L, [16–6-16]= 1.0×10^{-4} mol/L, [C_{22/8}]= 1.0×10^{-4} mol/L, [LSS]= 5.0×10^{-3} mol/L.