Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

SUPPORTING INFORMATION (SI)

Enhanced power factor and suppressed lattice thermal conductivity of CoSb₃ Skutterudite

by Ni substitution and nanostructuring for high thermoelectric performance

R. Annie Victoria Rose^a, D. Sidharth^b, M. Arivanandhan^{a*}, R. Jayavel^c

^aCentre for Nanoscience and Technology, Anna University, Chennai- 600025, India ^bInstitute of Physics, Academia Sinica, Taipei 11529, Taiwan. ^cCrystal Growth Centre, Anna University, Chennai 600025, Tamil Nadu, India.

*Corresponding Author: M. Arivanandhan (arivucz@gmail.com)

Table S1: Cp values of pure and Ni substituted samples as a function of temperature.

Temperature (K)	Cp (J/g*K)	Cp (J/g*K) for	Cp (J/g*K) for	Cp (J/g*K) for
	for Pure	$Co_{0.98}Ni_{0.02}Sb_{3}$	$Co_{0.96}Ni_{0.04}Sb_{3}$	$Co_{0.94}Ni_{0.06}Sb_{3}$
323	0.659	0.546	0.430	0.316
384	0.694	0.583	0.476	0.372
423	0.696	0.612	0.529	0.446
483	0.733	0.649	0.568	0.487
523	0.711	0.656	0.605	0.551
544	0.756	0.702	0.649	0.597

Table S2. Represent the crystallite size (nm), microstrain (ϵ) and dislocation density (δ) of the prepared material.

Sample	le Crystallite Micro		Dislocation density (δ)
	size (nm)		(lines/nm ²)
Pure CoSb ₃	48.52	0.151	4.2 x 10 ⁻⁴
$Co_{0.98}Ni_{0.02}Sb_3$	48.52	0.151	4.2 x 10 ⁻⁴
Co _{0.96} Ni _{0.04} Sb ₃	43.41	0.169	5.3 x 10 ⁻⁴

$Co_{0.94}Ni_{0.06}Sb_3$	45.83	0.159	4.7 x 10 ⁻⁴
$Co_{0.92}Ni_{0.08}Sb_3$	44.34	0.165	5.0 x 10 ⁻⁴

Figure S1 TGA /DSC of (a) pure $CoSb_3$ and (b) $Co_{0.94}Ni_{0.06}Sb_3$ samples.

Figure S2 Variation of Carrier concentration (n) and mobility (μ) of the Ni substituted samples as a function of Ni content at 323 K.

Table	S3.	Compari	son of	Thermo	pelectri	c paran	neters	with	the	previous	literatur	es c	f sin	nilar
materia	als.													

Materials	σ (Ωm) ⁻¹	S (µV/K)	Power Factor (W/mK ²)	к (W/mK)	zT	References
Co _{0.93} Ni _{0.07} Sb ₃	10 ⁵	-194	-	0.5	0.2 at 650 K	[31]
Bi _{0.5} Co ₄ Sb ₁₂	3 × 10 ⁴	-205	1.4×10 ⁻³	3.02	0.53 at 632K	[51]
CoSb ₃	19×10 ⁴	155	1.4×10 ⁻³	1.6	0.47 at 660K	[52]

Co _{0.95} Ni _{0.05} Sn _{1.5} Te _{1.5}	2	-250	1.9× 10 ⁻³	2	0.73 at 773K	[53]
Se _{0.05} Ni _{0.4} Co _{3.6} Sb ₁₂	8 × 10 ⁴	-103	2.7× 10 ⁻³	3.4	0.71 at 823K	[54]
Co _{0.91} Ni _{0.09} Sb ₃	7 × 10 ⁴	-150	-	3.2	0.70 at 573K	[55]
$S_{0.25}Co_{3.4}Ni_{0.6}Sb_{12}$	17.9×10 ⁴	-170	3.4×10 ⁻³	2.7	0.81 at 800K	[30]
Dy _{0.4} Co _{3.2} Ni _{0.8} Sb ₁₂	1.63× 10 ⁵	-180	5.2×10 ⁻³	2.3	1.4 at 773K	[25]
$Ba_{0.08}La_{0.05}Yb_{0.04}Co_4Sb_{12}$	2.39× 10 ⁴	-126	5.5×10 ⁻³	2.7	1.7 at 850K	[24]
0.2Co/Ba _{0.3} In _{0.3} Co ₄ Sb ₁₂	13×10^{4}	-210	-	2.6	1.8 at 850K	[23]
Co _{0.94} Ni _{0.06} Sb ₃	1.16 × 10 ⁵	-213	5.27×10 ⁻³	3.6	0.78 at 553K	Present work
Co _{0.96} Ni _{0.04} Sb ₃	5.44×10^{4}	-342	6.40×10 ⁻³	2.0	1.72 at 553K	Present work