Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Electronic Supplementary Material (ESI) for New Journal of Chemistry.

Supporting Information

Sustainable and facile synthesis of high-performance nitrogen-

doped carbon/graphene@LiFePO4 cathode materials from spent

LiFePO₄

Bo Wang,*^{a,b} Yue Li,^{a,b} Xiaoli Zhu,^a Fengyan Guo,^a Dingpei Zhang,^a and Hui Wang,^c

 ^a School of New Materials and Chemical Engineering, Tangshan University, Tangshan 063000, P. R. China.
 ^b Key Laboratory of Fine Chemical industry in Tangshan City, Tangshan University, Tangshan 063000, P. R. China
 ^c HeBei LingDian New Energy Technology Co., Ltd, Tangshan 063000, P. R. China

* Corresponding author. Tel: +86-315-2010649; Fax: +86-315-2010649.E-mail address: wangbo@buaa.edu.cn.

Fig. S1 The remaining and original discharge curves of the 26,650-type spent batteries in the range of 2.5 to 4.2 V at 0.5 C rate. The remaining and original discharge capacities are 2564. 86 and 3681.45 mAh, respectively.

Fig. S2 SEM images of the s-LFP at various magnifications.

Element	Weight (%)	Atomic (%)
С	17.92	31.38
0	33.38	43.19
Ν	1.27	2.38
Fe	30.25	11.39
Р	17.18	11.66

Table S1 The elemental composition of the as-synthesized N-DC/G@LPF

composites from the EDS $\ (Fig.\ 2d)$.

Fig. S3 (a) SEM image of the N-DC/G@LPF composites; corresponding EDX elemental mapping of (b) iron, (c) phosphorus, (d) carbon, (e) oxygen, and (f)

nitrogen.

Fig. S4 The partial enlarged HR-TEM images of the N-DC/G@LPF nanocomposites.

Fig. S5 Full spectrum of XPS survey of N-DC/G@LPF nanocomposites.

Fig. S6 The Li⁺ ions diffusion coefficients calculated by Randles-Sevcik equation for all electrodes.

Table S2.	Comparison	of electrochemical	performance of t	he N-DC/G@LFP in this
-----------	------------	--------------------	------------------	-----------------------

	Charge specific	Current	Cycle	
Type of material	capacity	density	number	Reference
	$(mAh g^{-1})$	(mA g ⁻¹)	(n)	
LFP/C composites	131.5	0.1 C	100	1
S-modifed reduced				
graphene oxide	$\sim \! 150$	0.2 C	100	2
modifed				
LiFePO ₄ /C				
LFP/rGO	128.03	0.1 C	50	3
nanocomposite				
LFP@ZC	151	0.1C	100	4
composites				
LiFePO ₄ /C	143.5	0.2C	100	5
composites				
N-DC/G@LFP	149.3	0.2 C	500	This
cathode materials				work

work with some other carbon-coated LFP materials reported in previous literatures.

References

- 1 X.Y. Liu, R.P. Zhao, Y.J. Xia, Q. Li, *Ionics*, 2022, 28, 4579-4585.
- Z.-L. Chen, Y.-J. Gu, G.-Y. Luo, Y.-L. Huo and F.-Z. Wu, *Ionics*, 2022, 28, 191-200.
- 3 E. Suarso, F. A. Setyawan, A. Subhan, M. Mahyiddin Ramli, N. Syakimah Ismail,
 M. Zainuri, Z. Arifin and Darminto, *J Mater Sci: Mater Electron.*, 2021, 32, 28297-28306.
- 4 Z. Jiang, S. Li, J. Lu, J. Du, Y. Tao, Y. Cheng and H. Wang, J. Alloy. Compd., 2023, 937, 168402.
- 5 Q. Sun, X. Li, H. Zhang, D. Song, X. Shi, J. Song, C. Li and L. Zhang, *J. Alloys Compd.*, 2020, **818**, 153292.